загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классич. механики Ньютона и классич. теории электромагнитного поля (классич. электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (д у а-лизм свет а); вторая - с невозможностью объяснить на основе классич. представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счёте, к открытию законов К.м.

Впервые квантовые представления (в т. ч. квантовая постоянная h) были введены в физику в работе M. Планка (1900), посвящённой теории теплового излучения (см. Планка закон излучения). Существовавшая к тому времени теория теплового излучения, построенная на основе классич. электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическою) равновесие между излучением и веществом не может быть достигнуто, т. к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классич. теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определёнными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света и равна E = hv.

От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух её формах к 1927. Первая начинается с работы Эйнштейна (1905), в к-рой была дана теория фотоэффекта - явления вырывания светом электронов из вещества. В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - сам свет состоит из отдельных порций - световых квантов (к-рые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний волны соотношением Планка E=hv. Ha основании этой гипотезы Эйнштейн объяснил закономерности фотоэффекта, которые противоречили классической (базирующейся на классич. электродинамике) теории света.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона (см. Комп-тона эффект). Кинематика такого столкновения определяется законами сохранения энергии и импульса, причём фотону наряду с энергией E = hv следует приписать импульс p = h/ = hv/с, где - длина световой волны. Энергия и импульс фотона связаны соотношением E = ср, справедливым в релятивистской механике для частицы с нулевой массой.

T. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, напр., в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная кор-пускулярно-волновая природа. Дуализм содержится уже в формуле E = hv, не позволяющей выбрать к.-л. одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота является характеристикой волны. Возникло формальное логич. противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физич. основ К.м.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 H. Бором условиям квантования атомных орбит (см. ниже), выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от её природы, следует поставить в соответствие волну, длина к-рой связана с импульсом частицы соотношением
[1137-14.jpg]

По этой гипотезе не только фотоны, но и все "обыкновенные частицы" (электроны, протоны и др.) обладают волновыми свойствами, к-рые, в частности, должны проявляться в явлении дифракции. В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у др. частиц, и справедливость формулы де Бройля была подтверждена экспериментально (см. Дифракция частиц). В 1926 Э. Шрёдингер предложил ур-ние, описывающее поведение таких "волн" во внешних силовых полях. Так возникла волновая механика. Волновое ур-ние Шрёдингера является основным ур-нием нерелятивистской К.м. В 1928 П. Дирак сформулировал релятивистское ур-ние, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных ур-ний релятивистской К. м.

Вторая линия развития начинается с работы Эйнштейна (1907), посвящённой теории теплоёмкости твёрдых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно нек-рому набору осцилляторов (колебат. систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучс-ния веществом происходят квантами энергии hv, можно выразить так: осциллятор поля не может обладать произвольной энергией, он может иметь только определённые значения энергии - дискретные уровни энергии, расстояние между к-рыми равно hv. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твёрдых тел сводится к колебаниям атомов, то и твёрдое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантованна, т. е. разность соседних уровней энергии (энергий, к-рыми может обладать осциллятор) должна равняться /zv, где - частота колебаний атомов. Теория Эйнштейна, уточнённая П. Деба-ем, M. Борном и T. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 H. Бор применил идею квантования энергии к теории строения атома, планетарная модель к-рого следовала из результатов опытов Э. Резерфор-да (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в к-ром сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе классич. представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классич. электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрич. заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен уменьшаться, и за время порядка 10-8 сек электрон должен упасть на ядро. Это означало, что законы классич. физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрич. поле атомного ядра, реально осуществляются лишь те, к-рые удовлетворяют определённым условиям квантования. T. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии. Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классич. орбиты была целым кратным постоянной Планка h. Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E_i на другой с меньшей энергией Ek; при этом рождается квант света с энергией, равной разности энергий уровней, между к-рыми осуществляется переход:

hv = Ei-Ek (2) Так возникает линейчатый спектр - основная особенность атомных спектров. Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирич. формул (см. Спектральные серии).

Существование уровней энергии в атомах было непосредственно подтверждено Франка-Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетич. уровней атома.

T. о., H. Бор, используя квантовую постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классич. механики). Этот факт позднее был объяснён на основе универсальности корпус-кулярно-волнового дуализма, содержащегося в гипотезе де Бройля.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логич. цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусств, правила квантования, к тому же противоречащие классич. электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение молекулярной связи и т. д. "Полуклассическая" теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой. Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классич. картину движения электрона по орбите, логически стройную теорию построить невозможно. Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классич. механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в к-рую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома. В 1925 В. Гейзен-бергу удалось построить такую формальную схему, в к-рой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраич. величины - матрицы; связь матриц с наблюдаемыми величинами (энергетич. уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита M. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления ур-ния Шрёдингера была показана математич. эквивалентность волновой (основанной на ур-нии Шрёдингера) и матричной механики. В 1926 M. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании К. м. сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование К. м. как последовательной физич. теории с ясными основами и стройным математич. аппаратом произошло после работы Гейзенберга (1927), в к-рой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физич. смысл ур-ний К. м., её связь с классич. механикой и другие как принципиальные вопросы, так и качеств, результаты К. м. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутр. характеристика (квантовое число) - спин. Важную роль сыграл открытый В. Паули (1925) т. н. принцип запрета (Паули принцип, см. ниже), имеющий фундамент, значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химич. связи, периодич. системы Д. И. Менделеева, металлич. проводимости и ферромагнетизма. Эти и MH. др. явления стали (по крайней мере качественно) понятными. Дальнейшее принца, пиальное развитие квантовой теории связано гл. обр. с релятивистской К. м. Нерелятивистская К. м. развивалась в основном в направлении охвата разнообразных конкретных задач физики атомов, молекул, твёрдых тел (металлов, полупроводников), плазмы и т. д., а также совершенствования матем. аппарата и разработки количеств, методов решения различных задач.

Вероятности и волны. Поскольку законы К. м. не обладают той степенью наглядности, к-рая свойственна законам классич. механики, целесообразно проследить линию развития идей, составляющих фундамент К. м., и только после этого сформулировать её основные положения. Выбор фактов, на основе к-рых строится теория, конечно, не единствен, поскольку К. м. описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.

Рассмотрим простейший опыт по распространению света (рис.1). На пути пучка света ставится прозрачная пластинка S.

Рис. 1.

Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из "частиц"- фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (напр., с пучком света крайне малой интенсивности), в к-ром можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. "цветность"). Оказывается, что нек-рые фотоны проходят сквозь пластинку, а нек-рые отражаются от неё. В чем причина этого? Может быть, имеется два разных сорта фотонов? Поставим контрольный опыт: внесём такую же пластинку на пути прошедшего света, к-рый должен бы содержать только один из двух "сортов" фотонов. Однако будет наблюдаться та же картина: часть фотонов пройдёт вторую пластинку, а часть отразится. Следовательно, одинаковые частицы в одинаковых условиях могут вести себя по-разному. А это означает, что поведение фотона при встрече с пластинкой непредсказуемо однозначно. Детерминизма в том смысле, как это понимается в классич. механике, при движении фотонов не существует. Этот вывод является одним из отправных пунктов для устранения противоречия между корпускулярными и волновыми свойствами частиц и построения теории квантовоме-ханич. явлений.

Задача отражения света от прозрачной пластинки не представляет к.-л. трудности для волновой теории: исходя из свойств пластинки, волновая оптика однозначно предсказывает отношение интенсивностей прошедшего и отражённого света. С корпускулярной точки зрения, интенсивность света пропорциональна числу фотонов. Обозначим через N общее число фотонов, через N1 и N2 - число прошедших и число отражённых фотонов (N1 + N2 = N). Волновая оптика определяет отношение N1/N2, и о поведении одного ф о т о-н а, естественно, ничего сказать нельзя. Отражение фотона от пластинки или прохождение через неё являются случайными событиями: нек-рые фотоны проходят через пластинку, нек-рые отражаются от неё, но при большом числе фотонов оказывается, что отношение N1/V2 находится в согласии с предсказанием волновой оптики. Количественно закономерности, проявляющиеся при случайных событиях, описываются с помощью понятия вероятности (см. Вероятностей теория). Фотон может с вероятностью W1пройти пластинку и с вероятностью W2 отразиться от неё. При общем числе фотонов N в среднем пройдёт пластинку W1N частиц, а отразится W2N частиц. Если N очень велико, то средние (ожидаемые) значения чисел частиц точно совпадают с истинными (хотя флуктуации существуют, и классич. оптика их учесть не может). Все соотношения оптики могут быть переведены с языка интенсивностей на язык вероятностей и тогда они будут относиться к поведению одного фотона. Вероятность того, что с фотоном произойдёт одно из двух альтернативных (взаимно исключающих) событий - прохождение или отражение, равна W1 + W2 =1. Это закон сложения вероятностей, соответствующий сложению интенсивностей. Вероятность прохождения через две одинаковые пластинки равна W21, а вероятность прохождения через первую и отражения от второй - W1 W2 (это отвечает тому, что на второй пластинке свет, прошедший первую пластинку, разделяется на прошедший и отражённый в том же отношении, как и на первой). Это закон умножения вероятностей (справедливый для независимых событий).

Рассмотренный опыт не специфичен для света. Аналогичные опыты с пучком электронов или др. микрочастиц также показывают непредсказуемость поведения отдельной частицы. Однако не только прямые опыты говорят в пользу того, что и в самом общем случае следует перейти к вероятностному описанию поведения микрочастиц. Теоретически невозможно представить, что одни микрочастицы описываются вероятностно, а другие классически: взаимодействие "классических" частиц с "квантовыми" с необходимостью приводило бы к внесению квантовых неопределённостей и делало бы поведение "классических" частиц также непредсказуемым (в смысле классич. детерминизма).

Предсказание вероятностей различных процессов - такова возможная формулировка задачи К. м., в отличие от задачи классической механики, состоящей в предсказании в принципе только достоверных событий. Конечно, вероятностное описание допустимо и в классической механике. Для получения достоверного предсказания классич. механика нуждается в абсолютно точном задании нач. условий, т. е. положений и скоростей всех образующих систему частиц. Если же нач. условия заданы не точно, а с нек-рой степенью неопределённости, то и предсказания будут содержать неопределённости, т. е. носить в той или иной степени вероятностный характер. Примером служит классическая статистич. физика, оперирующая с нек-рыми усреднёнными величинами. Поэтому дистанция между строем мысли квантовой и классич. механики была бы не столь велика, если бы основными понятиями К. м. были именно вероятности. Чтобы выяснить радикальное различие между К. м. и классич. механикой, несколько усложним рассмотренный выше опыт по отражению света.

Пусть отражённый пучок света (или микрочастиц) при помощи зеркала 3 поворачивается и попадает в ту же область А (напр., в тот же детектор, регистрирующий фотоны), что и прошедший пучок (рис. 2). Естественно было бы ожидать, что в этом случае измеренная интенсивность равна сумме интенсивностей прошедшего и отражённого пучков.

Рис. 2.

Но хорошо известно, что это не так: интенсивность в зависимости от расположения зеркала и детектора может меняться в довольно широких пределах и в нек-рых случаях (при равной интенсивности прошедшего и отражённого света) даже обращаться в ноль (пучки как бы гасят друг друга). Это - явление интерференции света. Что же можно сказать о поведении отдельного фотона в интерференционном опыте? Вероятность его попадания в данный детектор существенно перераспределится по сравнению с первым опытом, и не будет равна сумме вероятностей прихода фотона в детектор первым и вторым путями. Следовательно, эти два пути не являются альтернативными (иначе вероятности складывались бы). Отсюда следует, что наличие двух путей прихода фотона от источника к детектору существ, образом влияет на распределение вероятностей, и поэтому нельзя сказать, каким путём прошёл фотон от источника к детектору. Приходится считать, что он одновременно мог придти двумя различными путями.

Необходимо подчеркнуть радикальность возникающих представлений. Действительно, невозможно представить себе движение частицы одновременно по двум путям. К. м. и не ставит такой задачи. Она лишь предсказывает результаты опытов с пучками частиц. Подчеркнём, что в данном случае не высказывается никаких гипотез, а даётся лишь интерпретация волнового опыта с точки зрения корпускулярных представлений. (Напомним, что речь идёт не только о свете, но и о любых пучках частиц, напр, электронов.) Полученный результат означает невозможность классич. описания движения частиц по траекториям, отсутствие наглядности квантового описания.

Попытаемся всё же выяснить, каким путём прошла частица, поставив на возможных её путях детекторы. Естественно, что частица будет зарегистрирована в одном, а не сразу во всех возможных местах. Но как только измерение выделит определённую траекторию частицы, интерференционная картина исчезнет. Распределение вероятностей станет другим. Для возникновения интерференции нужны обе (все) возможные траектории. T. о., регистрация траектории частицы так изменяет условия, что два пути становятся альтернативными, и в результате получается сложение интенсивностей, к-рое было бы в случае "классич." частиц, движущихся по определённым траекториям .

Для квантовых явлений очень важно точное описание условий опыта, в к-рых наблюдается данное явление. В условия, в частности, входят и измерит, приборы. В классич. физике предполагается, что роль измерит, прибора может быть в принципе сведена только к регистрации движения и состояние системы при измерении не меняется. В квантовой физике такое предположение несправедливо: измерит, прибор наряду с др. факторами сам участвует в формировании изучаемого на опыте явления, и эту его роль нельзя не учитывать. Роль измерит, прибора в квантовых явлениях была всесторонне проанализирована H. Бором и В. Гейзенбер-гом. Она тесно связана с соотношением неопределённостей, к-рое будет рассмотрено позже.

Внимание к роли измерений не означает, что в К. м. не изучаются физич. явления безотносительно к приборам, напр, свойства частиц "самих по себе". Так, решаемые К. м. задачи об энергетич. уровнях атомов, о рассеянии микрочастиц при их столкновениях друг с другом, об интерференционных явлениях - это задачи о свойствах частиц и их поведении. Роль прибора выступает на первое место тогда, когда ставятся спе-цифич. вопросы, нек-рые из к-рых лишены, как выяснилось, смысла (напр., вопрос о том, по какой траектории двигался электрон в интерференционном опыте, т. к. либо нет траектории, либо нет интерференции).

Вернёмся к интерференционному опыту. До сих пор было сделано лишь негативное утверждение: частица не движется по определённому пути, и вероятности не складываются. Конструктивное предложение для описания подобной ситуации можно почерпнуть снова из волновой оптики. В оптике каждая волна характеризуется не только интенсивностью, но и фазой (интенсивность пропорциональна квадрату амплитуды). Совокупность этих двух действит. величин - амплитуды А и фазы ф -принято объединять в одно комплексное число, к-рое наз. комплексной амплитудой: = Aeiф. Тогда интенсивность равна I = ||2 = * = A2, где * - функция, комплексно сопряжённая с ф. T. к. непосредственно измеряется именно интенсивность, то для одной волны фаза никак не проявляется. В опыте с прохождением и отражением света ситуация именно такая: имеется две волны 1 и 2, ко одна из них существует только справа, а другая только слева (см. рис. 1); интенсивности этих волн I1 = A12, I2 = A22, и фазы не фигурируют (поэтому можно было обойтись только интенсивностями). В интерференционном опыте ситуация изменилась: волна 2 с помощью зеркала была направлена в область нахождения волны 1 (см. рис. 2). Волновое поле в области существования двух волн определяется в оптике с помощью принципа суперпозиции: волны налагаются друг на друга, т. е. складываются с учётом их фаз. Суммарная волна ф имеет комплексную амплитуду, равную сумме комплексных амплитуд обеих волн:
[1137-15.jpg]

Интенсивность суммарной волны зависит от разности фаз 1 -2 (пропорциональной разности хода световых пучков по двум путям):
[1137-16.jpg]

В частности, при A1= A2 и cos (]ph1 - 2)= = -1 ||2 = О.

В этом примере рассмотрен простейший случай сложения амплитуд. В более общем случае из-за изменения условий (напр., из-за свойств зеркала) амплитуды могут изменяться по величине и фазе, так что суммарная волна будет иметь вид

= с11 + c22, где C1 и C2 - комплексные числа:

Принципиальная суть явления при этом не изменяется. Характер явления не зависит также от общей интенсивности. Если увеличить в С раз, то интенсивность увеличится в |С|2 раз, т. е. |С|2 будет общим множителем в формуле распределения интенсивностей . Число С можно считать как комплексным, так и действительным, физ. результаты не содержат фазы числа С - она произвольна. Для интерпретации волновых явлений с корпускулярной точки зрения необходимо перенесение принципа суперпозиции в К. м. Поскольку К. м. имеет дело не с интенсивностями, а с вероятностями, следует ввести амплитуду вероятности = Aelф, полагая (по аналогии с оптич. волнами), что в е-роятность w = |c|2 = |с|2*). Здесь с - число, паз. нормировочным множителем, к-рый должен быть подобран так, чтобы суммарная вероятность обнаружения частицы во всех возможных

местах равнялась 1, т. е.
[1137-17.jpg]

Множитель с определён только по модулю, фаза его произвольна. Нормировочный множитель важен только для определения абс. вероятности; относит, вероятности определяются амплитудами вероятности в произвольной нормировке. Амплитуда вероятности наз. в К. м. также волновой функцией.

Амплитуды вероятности (как оптич. амплитуды) удовлетворяют принципу суперпозиции: если 1 и 2 - амплитуды вероятности прохождения частицы соответственно первым и вторым путём, то амплитуда вероятности для случая, когда осуществляются оба пути, должна быть равна = 1 + 2. Тем самым фраза: "частица прошла двумя путями" приобретает волновой смысл, а вероятность то = |1 + 2|2 обнаруживает интерференционные свойства.

Следует подчеркнуть различие в смысле, вкладываемом в принцип суперпозиции в оптике (и др. волновых процессах) и К. м. Сложение (суперпозиция) обычных волн не противоречит наглядным представлениям, т. к. каждая из волн представляет возможный тип колебаний и суперпозиция соответствует сложению этих колебаний в каждой точке. В то же время квантовомеханич амплитуды вероятности описывают альтернативные (с классич. точки зрения, исключающие друг друга) движения (напр., волны 1 и 2 соответствуют частицам, приходящим в детектор двумя различными путями). С классич. точки зрения, сложение таких движений представляется совершенно непонятным. В этом проявляется отсутствие наглядности квантовомеханич. принципа суперпозиции. Избежать формального логич. противоречия квантовомеханич. принципа суперпозиции (возможность для частицы пройти одновременно двумя путями) позволяет вероятностная интерпретация. Постановка опыта по определению пути частицы (см. выше) приведёт к тому, что с вероятностью |1|2 частица пройдёт первым и с вероятностью |2|2 - вторым путём. Суммарное распределение частиц на экране будет определяться вероятностью |1|2 +|2|2, т. е. интерференция исчезнет.

T. о., рассмотрение интерференционного опыта приводит к следующему выводу. Величиной, описывающей состояние физ. системы в К. м., является амплитуда вероятности, или волновая функция, системы. Осн. черта такого квантовомеханич- описания - предположение о справедливости принципа суперпозиции состояний.

Принцип суперпозиции - осн. принцип К. м. В общем виде он утверждает, что если в данных условиях возможны различные квантовые состояния частицы (или системы частиц), к-рым соответствуют волновые функции 1, 2,..., i, ..., то существует и состояние, описываемое волновой функцией
[1137-18.jpg]

где Ci - произвольные комплексные числа. Если 1 описывают альтернативные состояния, то |сi|2 определяет вероятность того, что система находится в состоянии с волновой функцией 1 , и
[1137-19.jpg]

Волны де Бройля и соотношение неопределённостей. Одна из основных задач К. м.- нахождение волновой функции, отвечающей данному состоянию изучаемой системы. Рассмотрим решение этой задачи на простейшем (но важном) случае свободно движущейся частицы. Согласно де Бройлю, со свободной частицей, имеющей импульс р, связана волна с длиной = h/p. Это означает, что волновая функция свободной частицы () - волна де Бройля - должна быть такой функцией координаты х, чтобы при изменении на волновая функция возвращалась к прежнему значению. Этим свойством обладает функция еi2пч/x. Если ввести величину k = 2/ наз. волновым числом, то соотношение де Бройля примет вид: = (h/2)k = hk. T. о., если частица имеет определённый импульс р, то её состояние описывается волновой функцией
[1137-20.jpg]

где С - постоянное комплексное число. Эта волновая функция обладает замечательным свойством: квадрат её модуля ||2 не зависит от х, т. е. вероятность нахождения частицы, описываемой такой волновой функцией, в любой точке пространства одинакова. Др. словами, частица со строго определённым импульсом совершенно нелокализована. Конечно, это идеализация - полностью нелокализованных частиц не существует. Но в той же мере идеализацией является и волна со строго определённой длиной волны, а следовательно, и строгая определённость импульса частицы. Поэтому точнее сказать иначе: чем более определённым является импульс частицы, тем менее определённо её положение (координата). В этом заключается специфический для К. м. принцип неопределённости. Чтобы получить количеств, выражение этого принципа - соотношение неопределённостей, рассмотрим состояние, представляющее собой суперпозицию некоторого (точнее, бесконечно большого) числа де-бройлевских волн с близкими волновыми числами, заключёнными в малом интервале k Получающаяся в результате суперпозиции волновая функция (x) (она называется волновым пакетом) имеет такой характер: вблизи нек-рого фиксированного значения x0 все амплитуды сложатся, а вдали от x0 (|x-x0|>>) будут гасить друг друга из-за большого разнобоя в фазах. Оказывается , что практически такая волновая функция сосредоточена в области шириной x, обратно пропорциональной интервалу k, т. е. x~1/k, или .xp~h(где = hk - неопределённость импульса частицы). Это соотношение и представляет собой соотношение неопределённостей Гейзенбепга.

Математически любую функцию (x) можно представить как наложение простых периодич. волн - это известное Фурье преобразование, на основании свойств к-рого соотношение неопределённостей между x и k получается математически строго. Точное соотношение имеет вид неравенства x k>=1/2, или
[1137-21.jpg]

причём под неопределённостями p и x понимаются дисперсии, т. е. среднеквадратичные отклонения импульса и координаты от их ср. значений. Физич. интерпретация соотношения (6) заключается в том, что (в противоположность классич. механике) не существует такого состояния, в к-ром координата и импульс частицы имеют одновременно точные значения. Масштаб неопределённостей этих величин задаётся постоянной Планка h, в этом заключён важный смысл этой мировой постоянной. Если неопределённости, связанные соотношением Гейзен-берга, можно считать в данной задаче малыми и пренебречь ими, то движение частицы будет описываться законами классич. механики (как движение по определённой траектории).

Принцип неопределённости является фундаментальным принципом К. м., устанавливающим физич. содержание и структуру её математич. аппарата. Кроме этого, он играет большую эвристич. роль, т.к. многие результаты К.м. могут быть получены и поняты на основе комбинации законов классич. механики с соотношением неопределённостей. Важным примером является проблема устойчивости атома, о к-рой говорилось выше. Рассмотрим эту задачу для атома водорода. Пусть электрон движется вокруг ядра (протона) по круговой орбите радиуса со скоростью v. По закону Кулона сила притяжения электрона к ядру равна е2/r2, где е - абс. величина заряда электрона, а центростремительное ускорение равно v2/r. По второму закону Ньютона mv2/r=e2/r2, где т - масса электрона. Отсюда следует, что радиус орбиты r = e2/mv2может быть сколь угодно малым, если скорость достаточно велика. Но в К. м. должно выполняться соотношение неопределённостей. Если допустить неопределённость положения электрона в пределах радиуса его орбиты г, а неопределённость скорости - в пределах , т. е. импульса в пределах р - mv, то соотношение неопределён-костей примет вид: mvr>=h. Воспользовавшись связью между и r, определяемой законом Ньютона, получим v<=e2lh и r>=h2/mе2. Следовательно, движение электрона по орбите с радиусом, меньшим r0 = h2/m2~0,5· 10-8 см, невозможно, электрон не может упасть на ядро - атом устойчив. Величина r0 и является радиусом атома водорода ("бо-ровским радиусом"). Ему соответствует максимально возможная энергия связи атома E0 (равная полной энергии электрона в атоме, т. е. сумме кинетич. энергии mv2/2 и потенциальной энергии - е2/r0, что составляет E0 = -е2/2r0~ ~ - 13,6 эв), определяющая его минимальную энергию - энергию осн. состояния.

T. о., квантовомеханич. представления впервые дали возможность теоретически оценить размеры атома (выразив его радиус через мировые постоянные h, т, е). "Малость" атомных размеров оказалась связанной с тем, что чмала" постоянная И.

Примечательно, что совр. представления об атомах, обладающих вполне определёнными устойчивыми состояниями, оказываются ближе к представлениям древних атомистов, чем основанная на законах классич. механики. планетарная модель атома, позволяющая электрону находиться на любых расстояниях от ядра.

Строгое решение задачи о движении электрона в атоме водорода получается из квантовомеханич. ур-ния движения - ур-ния Шрёдингера (см. ниже); ре-,шение ур-ния Шрёдингера даёт волновую функцию , к-рая описывает состояние электрона, находящегося в области притяжения ядра. Но и не зная явного вида , можно утверждать, что эта волновая функция представляет собой такую суперпозицию волн де Бройля, к-рая соответствует локализации электрона в области с размером >> r0 и разбросу по импульсам ~ h/r0.

Соотношение неопределённостей позволяет также понять устойчивость молекул и оценить их размеры и минимальную энергию, объясняет существование вещества, к-рое ни при каких темп-pax не превращается при нормальном давлении в твёрдое состояние (гелий), даёт качеств, представления о структуре и размерах ядра и т. д.

Существование уровней энергии - характерное квантовое явление, присущее всем физич. системам, не вытекает непосредственно из соотношения неопределённостей. Ниже будет показано, что дискретность уровней энергии связанной системы можно объяснить на основе ур-ния Шрёдингера; отметим лишь, что возможные дискретные значения энергии (энер-гетич. уровни) Eп > E0соответствуют возбуждённым состояниям квантовомеханич. системы (см., напр., Атом).

Стационарное уравнение Шрёдингера. Волны де Бройля описывают состояние частицы только в случае свободного движения. Если на частицу действует поле сил с потенциальной энергией V (наз. также потенциалом), зависящей от координат частицы, то волновая функция частицы определяется дифференциальным ур-нием, к-рое получается путём след, обобщения гипотезы де Бройля. Для случая, когда движение частицы с заданной энергией & происходят в одном измерении (вдоль оси х), ур-ние, к-рому удовлетворяет волна де Бройля (5), может быть записано в виде:
[1138-8.jpg]

где p =(2тE)1/2 - импульс свободно движущейся частицы (массы т). Если частица с энергией E движется в потенциальном поле V(x), не зависящем от времени, то квадрат её импульса (определяе-м-ый законом сохранения энергии) равен р2 = 2т[E - V(x)]. Простейшим обобщением ур-ния (*) является поэтому ур-ние
[1138-9.jpg]

Оно наз. стационарным (не зависящим от времени) уравнением Шрёдингера и относится к основным ур-ниям К. м. Решение этого ур-ния зависит от вида сил, т. е. от вида потенциала V(x). Рассмотрим неск. типичных случаев.

1) V = const, E>V. Решением является волна де Бройля = Ceikx, где h2k2/2m = p2/2m =E-V - кинетическая энергия частицы.

Рис. 3.

2) Потенциальная стенка:

V = O при x < О, V = V1 > О при x > О. Если полная энергия частицы больше высоты стенки, т. е.E > V1, и частица движется слева направо (рис. 3), то решение ур-ния (7) в области х<0 имеет вид двух волн де Бройля - падающей и отражённой:
[1138-10.jpg]

(волна с волновым числом k = - k0 соответствует движению справа налево с тем же импульсом р0), а при x>0 - проходящей волны де Бройля:
[1138-11.jpg]

Отношения |C1/C0|2 и |C'0/0|2 определяют вероятности прохождения частицы над стенкой и отражения от неё. Наличие отражения - специфически квантовомеханич. (волновое) явление (аналогичное частичному отражению световой волны от границы раздела двух прозрачных сред): "классич." частица проходит над барьером, и лишь импульс её уменьшается до значения
[1138-12.jpg]

вели энергия частицы меньше высоты стенки, E < V (рис. 4,а), то кинетич. энергия частицы E - V в области х>0 отрицательна. В классич. механике это невозможно, и частица не заходит в такую область пространства - она отражается от потенциальной стенки. Волновое движение имеет др. характер. Отри-цат. значение k2(p2/2m = h2k2/2m<0) означает, что k - чисто мнимая величина, k = ix, где и вещественно. Поэтому волна еikxпревращается в е-kx, т. е. коле-бат. режим сменяется затухающим (x>0,

Рис. 4,

иначе получился бы лишённый физ. смысла неограниченный рост волны с увеличением х). Это явление хорошо известно в теории колебаний. Под энергетич. схемой на рис. 4,а (и рис. 4,6) изображено качеств, поведение волновой функции (x), точнее её действит. части.

3) Две области, свободные от сил, разделены прямоугольным потенциальным барьером V, и частица движется к барьеру слева с энергией E

Рис. 5,

Уровни энергии. Рассмотрим поведение частицы в поле произвольной потенциальной ямы (рис. 5). Пусть потенциал отличен от нуля в нек-рой ограниченной области, причем V < О (силы притяжения). При этом и классическое, и квантовое движения существенно различны в зависимости от того, положительна или отрицательна полная энергия E частицы. При E>0 "классич." частица проходит над ямой и удаляется от неё. Отличие квантовомеханич. движения от классического состоит в том, что происходит частичное отражение волны от ямы; при этом возможные значения энергии ничем не ограничены - энергия частицы имеет непрерывный спектр. При E < О частица оказывается "запертой" внутри ямы. В классич. механике эта ограниченность области движения абсолютна и возможна при любых значениях E<0. В К. м. ситуация существенно меняется. Волновая функция должна затухать по обе стороны от ямы, т. е. иметь вид е-x|x| . Однако решение, удовлетворяющее этому условию, существует не при всех значениях E, а только при определённых дискретных значениях. Число таких дискретных значений Eпможет быть конечным или бесконечным, но оно всегда счётно, т. е. может быть перенумеровано, и всегда имеется низшее значение E0 (лежащее выше дна потенциальной ямы); номер решения n наз. квантовым числом. В этом случае говорят, что энергия системы имеет дискретный спектр. Дискретность допустимых значений энергии системы (или соответствующих частот = En/h, где = 2- угловая частота) - типично волновое явление. Его аналогии наблюдаются в классич. физике, когда волновое движение происходит в ограниченном пространстве. Так, частоты колебаний струны или частоты электромагнитных волн в объёмном резонаторе дискретны и определяются размерами и свойствами границ области, в к-рой происходят колебания. Действительно, ур-ние Шрёдингера математически подобно соответствующим ур-ниям для струны или резонатора.

Рис. 6.

Проиллюстрируем дискретный спектр энергии на примере квантового осциллятора. На рис. 6 по оси абсцисс отложено расстояние частицы от положения равновесия. Кривая (парабола) представляет потенциальную энергию частицы. В этом случае частица при всех энергиях "заперта" внутри ямы, поэтому спектр энергии дискретен. Горизонтальные прямые изображают уровни энергии частицы. Энергия низшего уровня E0 = h/2; это наименьшее значение энергии, совместимое с соотношением неопределённостей: положение частицы на дне ямы (E = О) означало бы точное равновесие, при к-ром и x = О, и p = О, что невозможно, согласно принципу неопределённости. Следующие, более высокие уровни энергии осциллятора расположены на равных расстояниях через интервал h; формула для энергии n-го уровня:
[1138-13.jpg]

Над каждой горизонтальной прямой на рис. приведено условное изображение волновой функции данного состояния. Характерно, что число узлов волновой функции (т. е. число прохождений через О) равно квантовому числу n энер-гетич. уровня. По др. сторону ямы (за точкой пересечения уровня с кривой потенциала) волновая функция быстро затухает, в соответствии с тем, что говорилось выше.

В общем случае каждая квантовомеханич. система характеризуется своим энергетическим спектром. В зависимости от вида потенциала (точнее, от характера взаимодействия в системе) энергетич. спектр может быть либо дискретным (как у осциллятора), либо непрерывным (как у свободной частицы,- её кинетич. энергия может иметь произвольное положит, значение), либо частично дискретным, частично непрерывным (напр., уровни атома при энергиях возбуждения, меньших энергии ионизации, дискретны, а при больших энергиях - непрерывны).

Особенно важным является случай, имеющий место в атомах, молекулах, ядрах и др. системах, когда наинизшее значение энергии, соответствующее осн. состоянию системы, лежит в области дискретного спектра и, следовательно, осн. состояние отделено от первого возбуждённого состояния энергетической щелью. Благодаря этому внутр. структура системы не проявляется до тех пор, пока обмен энергией при её взаимодействиях с др. системами не превысит определённого значения - ширины энергетич. щели. Поэтому при ограниченном обмене энергией сложная система (напр., ядро или атом) ведёт себя как бесструктурная частица (материальная точка). Это имеет первостепенное значение для понимания, напр., теплового движения. Так, при энергиях теплового движения, меньших энергии возбуждения атомных уровней, электроны атомов не могут участвовать в обмене энергией и не дают вклада в теплоёмкость.

Временное уравнение Шрёдингера. До сих пор рассматривались лишь возможные квантовые состояния системы и не рассматривалась эволюция системы во времени (её динамика), определяемая зависимостью волновой функции от времени. Полное решение задач К. м. должно давать волновую функцию как функцию координат и времени t . Для одномерного движения она определяется ур-нием
[1138-14.jpg]

являющимся уравнением движения в К. м. Это ур-ние наз. временным уравнением Шрёдингера. Оно справедливо и в том случае, когда потенциальная энергия зависит от времени: V = V(x, t).

Частными решениями ур-ния (9) являются функции
[1138-15.jpg]

Здесь E - энергия частицы, а (x) удовлетворяет стационарному ур-нию Шрёдингера (7); для свободного движения (x) является волной де Бройля еikx.

Волновые функции (10) обладают тем важным свойством, что соответствующие распределения вероятностей не зависят от времени, т. к. |(x,t)|2 = = |(x)|2. Поэтому состояния, описываемые такими волновыми функциями, наз. стационарными; они играют особую роль в приложениях К. м.

Общее решение временного ур-ния Шрёдингера представляет собой суперпозицию стационарных состояний. В этом общем (нестационарном) случае, когда вероятности существенно меняются со временем, энергия E не имеет определённого значения. Так, если
[1138-16.jpg]

то E = h1 с вероятностью |C1|2 и E= h2 с вероятностью |С2|2. Для энергии и времени существует соотношение неопределённостей: Et~h, (11) где E - дисперсия энергии, а t- промежуток времени, в течение к-рого энергия может быть измерена.

Трёхмерное движение. Момент количества движения. До сих пор рассматривалось (ради простоты) одномерное движение. Обобщение на движение частицы в трёх измерениях не содержит принципиально новых элементов. В этом случае волновая функция зависит от трёх координат х,y,z (и времени): = (x,y,z,t), а волна де Бройля имеет вид
[1138-17.jpg]

где рх, р_у, pг - три проекции импульса на оси координат, а E = (р2х + p2y+"p2z)/2m. Соответственно имеются три соотношения неопределённостей:
[1138-18.jpg]

Временное ур-ние Шрёдингера имеет вид:
[1138-19.jpg]

Это ур-ние принято записывать в символич. форме
[1138-20.jpg]

где
[1138-21.jpg]

- дифференциальный оператор, наз. оператором Гамильтона, или гамильтонианом. Стационарным решением ур-ния (14) является
[1138-22.jpg]

где 0 - решение ур-ния Шрёдингера для стационарных состояний:
[1138-23.jpg]

При трёхмерном движении спектр энергии также может быть непрерывным и дискретным. Возможен и случай, когда неск. разных состояний имеют одинаковую энергию; такие состояния наз. в ы-рожденными. В случае непрерывного спектра частица уходит на бесконечно большое расстояние от центра сил. Но, в отличие от одномерного движения (когда были только две возможности - прохождение или отражение), при трёхмерном движении частица может удалиться от центра под произвольным углом к направлению первоначального движения, т. е. рассеяться. Волновая функция частицы теперь является суперпозицией не двух, а бесконечного числа волн де Бройля, распространяющихся по всевозможным направлениям. Рассеянные частицы удобно описывать в сферич. координатах, т. е. определять их положение расстоянием от центра (радиусом) r и двумя углами - широтой и азимутом . Соответствующая волновая функция на больших расстояниях r от центра сил имеет вид:
[1138-24.jpg]

Первый член (пропорциональный волне це Бройля, распространяющейся вдоль. оси z) описывает падающие частицы, а второй (пропорциональный "радиальной волне де Бройля") - рассеянные. Функция f (, ) наз. амплитудой рассеяния; она определяет т. н. дифференциальное сечение рассеяния d, характеризующее вероятность рассеяния под данными углами:

d=|f(,)|2d, (18)

где d - элемент телесного угла , в к-рый происходит рассеяние.

Дискретный спектр энергии возникает, как и при одномерном движении, когда частица оказывается внутри потенциальной ямы. Энергетич. уровни нумеруют квантовыми числами, причём, в отличие от одномерного движения, не одним, а тремя. Наибольшее значение имеет задача о движении в поле центральных сил притяжения. В этом случае также удобно пользоваться сферич. координатами.

Момент количества движения. Угловая часть движения (вращение) определяется в К. м., как и в классич. механике, заданием момента количества движения, к-рый при движении в поле центральных сил сохраняется. Но, в отличие от классич. механики, в К. м. момент имеет дискретный спектр, т. е. может принимать только вполне определённые значения. Это можно показать на примере азимутального движения-вращения вокруг заданной оси (примем её за ось z). Волновая функция в этом случае имеет вид "угловой волны де Бройля" e'm'f, где - азимут, а число т так же связано с моментом Mz, как в плоской волне де Бройля волновое число k с импульсом р, т. е. т = MzIh. T. к. углы и + 2 описывают одно и то же положение, то и волновая функция при изменении на 2 должна возвращаться к прежнему значению. Отсюда вытекает, что т может принимать только целочисленные значения: т = О, ±1, ±2,..., т. е. момент может быть равен

Мz = mh = 0, ±h, ±2h,··· (19)

Вращение вокруг оси z есть только часть углового движения (это проекция движения на плоскость ху), a Mz - не полный момент, а только его проекция на ось z. Чтобы узнать полный момент, надо определить две остальные его проекции. Но в К. м. нельзя одновременно точно задать все три составляющие момента. Действительно, проекция момента содержит произведение проекции импульса на соответствующее плечо (координату, перпендикулярную импульсу), а все проекции импульса и все плечи, согласно соотношениям неопределённостей (13), одновременно не могут иметь точные значения. Оказывается, что, кроме проекции Mz момента количества движения на ось z (задаваемой числом т), можно одновременно точно задать величину момента M, определяемую целым числом /:

M2 = h2/(/+l), / = 0,1,2,... (20)

T. о., угловое движение даёт два квантовых числа - / и т. Число / наз. орбитальным квантовым числом, от него может зависеть значение энергии частицы (как в классич. механике от вытянутости орбиты). Число т наз. магнитным квантовым числом и при данном I может принимать значения т = О, ±1, ±2, ..., ±1 - всего 21 + 1 значений; от т энергия не зависит, т. к. само значение т зависит от выбора оси z, а поле имеет сферич. симметрию. Поэтому уровень с квантовым числом I имеет (2/ + 1)-кратное вырождение. Энергия уровня начинает зависеть от т лишь тогда, когда сферич. симметрия нарушается, напр, при помещении системы в магнитное поле (Зеема-на эффект).

При заданном моменте радиальное движение похоже на одномерное движение с тем отличием, что вращение вызывает центробежные силы. Их учитывают введением (кроме обычного потенциала) центробежного потенциала, к-рый имеет вид М2/2тrг, как и в классич. механике (здесь т - масса частицы). При этом квадрат момента M2 следует заменить на величину h2l(l + 1). Решение ур-ния Шрёдингера для радиальной части волновой функции атома определяет его уровни энергии и вводит третье квантовое число - радиальное пrили главное п, к-рые связаны соотношением n = nr + 1 + 1, n, = = 0, 1, 2, ..., = 1, 2, 3,...В частности, для движения электрона в кулоновском поле ядра с зарядом Ze (водородоподоб-ный атом) уровни энергии определяются формулой
[1138-25.jpg]

т. е. энергия зависит только от главного квантового числа п. Для многоэлектронных атомов, в которых каждый электрон движется не только в поле ядра, но и в поле остальных электронов, уровни энергии зависят также и от /.

На рис. 3 в статье Атом приведены радиальные и угловые распределения электронной плотности (т.е. плотности вероятности или плотности заряда) вокруг ядра. Видно, что задание момента (т. е. чисел / и т) полностью определяет угловое распределение. В частности, при l=O (M2 = О) распределение электронной плотности сферически симметрично. T. о., квантовое движение при малых / совершенно непохоже на классическое. Так, сферически симметричное состояние со ср. значением радиуса r<>О в нек-рой степени, отвечает как бы классич. движению по круговой орбите (или по совокупности круговых орбит, наклонённых под разными углами), т. е. движению с ненулевым моментом (нулевой момент в классич. механике соответствует нулевому плечу, а здесь плечо r<>0). Это различие между квантовомеханиче-ским и классическим движением является следствием соотношения неопределённостей и может быть истолковано на его основе. При больших квантовых числах (напр., при l>>1 1, пr>>1) длина волны де Бройля становится значительно меньше расстояний L, характерных для движения данной системы:
[1138-26.jpg]

В этом случае квантрвомеханич. законы движения приближённо переходят в классич. законы движения по определённым траекториям, подобно тому, как законы волновой оптики в аналогичных условиях переходят в законы геомет-рич. оптики (описывающей распространение света с помощью лучей). Условие малости длины де-бройлевской волны (22) означает, что pL >>h, где pL по порядку величины равно классич. действию для системы. В этих условиях квант действия h можно считать очень малой величиной, т. е. формально переход квантовомеханич. законов в классические осуществляется при h -> О. В этом пределе исчезают все специфические квантовомеханич. явления, напр, обращается в нуль вероятность туннельного эффекта.

Спин. В К. м. частица (как сложная, напр, ядро, так и элементарная, напр, электрон) может иметь собственный момент количества движения, наз. спином частицы. Это означает, что частице можно приписать квантовое число (s), аналогичное орбитальному квантовому числу l. Квадрат собств. момента количества движения имеет величину h2s(s+l), а проекция момента на определённое направление может принимать 2s+1 значений от - hs до +hs с интервалом h. T. о., состояние частицы (2s+ I) - кратно вырождено. Поэтому волна де Бройля частицы со спином аналогична волне с поляризацией: при данной частоте и длине волны она имеет 2s+l поляризаций. Число таких поляризаций может быть произвольным целым числом, т. е. спиновое квантовое число s может быть как целым (0,1,2,...), так и полуцелым ('/2, 3/2, 5/2,...) числом. Спин электрона, протона и нейтрона равен 4/2 (в единицах h). Спин ядер, состоящих из чётного числа нуклонов (протонов и нейтронов), - целый или нулевой, а из нечётного - полуцелый. Отметим, что для фотона соотношение между числом поляризаций и спином (к-рый равен 1) другое: фотон не имеет массы покоя, а (как показывает релятивистская К. м.) для таких частиц число поляризаций равно двум (а не 2s + 1 = 3).

Системы многих частиц. Тождественные частицы. Квантовомеханич. ур-ние движения для системы N частиц получается соответствующим обобщением ур-ния Шрёдингера для одной частицы. Оно содержит потенциальную энергию, зависящую от координат всех N частиц, и включает как воздействие на них внешнего поля, так и взаимодействие частиц между собой. Волновая функция также является функцией от координат всех частиц. Её можно рассматривать как волну в ЗN-мерном пространстве; следовательно, наглядная аналогия с распространением волн в обычном пространстве утрачивается. Но это теперь несущественно, поскольку известен смысл волновой функции как амплитуды вероятности .

Если квантовомеханич. системы состоят из одинаковых частиц, то в них наблюдается специфическое явление, не имеющее аналогии в классич. механике. В классич. механике случай одинаковых частиц тоже имеет нек-рую особенность. Пусть, напр., столкнулись две одинаковые "классич." частицы (первая двигалась слева, а вторая - справа) и после столкновения разлетелись в разные стороны (напр., первая - вверх, вторая - вниз). Для результата столкновения не имеет значения, какая из частиц пошла, напр., вверх, поскольку частицы одинаковы,- практически надо учесть обе возможности (рис. 7,я и 7,6). Однако в принципе в классич. механике можно различить эти два процесса, т. к. можно проследить за траекториями частиц во время столкновения. В К. м. траекторий, в строгом смысле этого слова, нет, и область столкновения обе частицы проходят с нек-рой неопределённостью, с "размытыми траекториями" (рис. 7,в).

Рис. 7.

В процессе столкновения области размытия перекрываются и невозможно даже в принципе различить эти два случая рассеяния. Следовательно, одинаковые частицы становятся полностью неразличимыми - тождественными. Не имеет смысла говорить о двух разных случаях рассеяния, есть только один случай - одна частица пошла вверх, другая - вниз, индивидуальности у частиц нет.

Этот квантовомеханич. принцип неразличимости одинаковых частиц можно сформулировать математически на языке волновых функций. Обнаружение частицы в данном месте пространства определяется квадратом модуля волновой функции, зависящей от координат обеих частиц, |(1,2)|2, где 1 и 2 означают совокупность координат (включая и спин) соответственно первой и второй частицы. Тождественность частиц требует, чтобы при перемене местами частиц 1 и 2 вероятности были одинаковыми, т. е.

|(1,2)|2=|(2,1)|2. (23)

Отсюда следует, что может быть два случая:

(1,2) = (2,1), (24,а) (1,2)=-(2,1). (24,6)

Если при перемене частиц местами волновая функция не меняет знака, то она наз. симметричной [случай (24,а)], а если меняет,- антисимметричной [случай (24,6)]. T. к. все взаимодействия одинаковых частиц симметричны относительно переменных 1, 2, то свойства симметрии или антисимметрии волновой функции сохраняются во времени.

В системе из произвольного числа тождеств, частиц должна иметь место симметрия или антисимметрия относительно перестановки любой пары частиц. Поэтому свойство симметрии или антисимметрии является характерным признаком данного сорта частиц. Соответственно, все частицы делятся на два класса: частицы с симметричными волновыми функциями наз. бозонами, с антисимметричными - фермио-нами. Существует связь между значением спина частиц и симметрией их волновых функций: частицы с целым спином являются бозонами, с полуцелым - фермионами (т.н. связь спина и статистики; см. ниже). Это правило сначала было установлено эмпирически, а затем доказано В. Паули теоретически (оно является одной из основных теорем релятивистской К. м.). В частности, электроны, протоны и нейтроны являются фермионами, а фотоны, пи-мезоны, К-мезоны - бозонами. Сложные частицы, состоящие из фермионов, являются фермионами, если состоят из нечётного числа частиц, и бозонами, если состоят из чётного числа частиц; этими свойствами обладают, напр., атомные ядра.

Свойства симметрии волновой функции существенно определяют статистич. свойства системы. Пусть, напр., невзаимодействующие тождеств, частицы находятся в одинаковых внешних условиях (напр., во внешнем поле). Состояние такой системы можно определить, задав числа заполнения - числа частиц, находящихся в каждом данном (индивидуальном) состоянии, т. е. имеющих одинаковые наборы квантовых чисел. Но если тождеств, частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, т. к. для фермионов волновая функция должна быть антисимметричной. Это свойство наз. принципом запрета Паули. T. о., числа заполнения для фермионов могут принимать лишь значения О или 1. T. к. электроны являются фермионами, то принцип Паули существенно влияет на поведение электронов в атомах, в металлах и т. д. Для бозонов (имеющих симметричную волновую функцию) числа заполнения могут принимать произвольные целые значения. Поэтому с учётом квантовомеханич. свойств тождеств, частиц существует два типа статистик частиц: Ферми - Дирака статистика для фермионов и Базе-Эйнштейна статистика для бозонов. Примером системы, состоящей из фермионов (ферми-системы), является электронный газ в металле, примером бозе-системы - газ фотонов (т. е. равновесное электромагнитное излучение), жидкий 4He и др.

Принцип Паули является определяющим для понимания структуры перио-дич. системы элементов Менделеева. В сложном атоме на каждом уровне энергии может находиться число электронов, равное кратности вырождения этого уровня (числу разных состояний с одинаковой энергией). Кратность вырождения зависит от орбитального квантового числа и от спина электрона; она равна (21 + 1) (2s + 1) = 2(2/ + 1). Так возникает представление об электронных оболочках атома, отвечающих периодам в таблице элементов Менделеева (см. Атом).

Обменное взаимодействие. Молекула. Молекула представляет собой систему ядер и электронов, между к-рыми действуют электрич. (кулоновские) силы (притяжения и отталкивания). Т.к. ядра значительно тяжелее электронов, электроны движутся гораздо быстрее и образуют нек-рое распределение отрицат. заряда, в поле к-рого находятся ядра. В классич. механике и электростатике доказывается, что такого типа система не имеет устойчивого равновесия. Поэтому, даже если принять устойчивость атомов (к-рую, как говорилось выше, нельзя объяснить на основе законов классич. физики), невозможно без специфически квантовомеханич. закономерностей объяснить устойчивость молекул. Особенно непонятным с точки зрения классич. представлений является существование молекул из одинаковых атомов, т. е. с т. н. кова-лентной химич. связью (напр., простейшей молекулы - H2). Оказалось, что свойство антисимметрии электронной волновой функции так изменяет характер взаимодействия электронов, находящихся у разных ядер, что возникновение такой связи становится возможным.

Рассмотрим для примера молекулу водорода H2, состоящую из двух протонов и двух электронов. Волновая функция такой системы представляет собой произведение двух функций, одна из к-рых зависит только от координат, а другая- только от спиновых переменных обоих электронов. Если суммарный спин двух электронов равен нулю (спины антипараллельны), спиновая функция антисимметрична относительно перестановки спиновых переменных электронов. Следовательно, для того чтобы полная волновая функция в соответствии с принципом Паули была антисимметричной, координатная функция должна быть симметричной относительно перестановки координат обоих электронов. Это означает, что координатная часть волновой функции имеет вид:

~ [a(1)b(2) + b(1)a(2)], (25)

где a(i), b(i) - волновые функции i-гo электрона (i = 1,2) соответственно у ядра а и b.

Кулоновское взаимодействие пропорционально плотности электрического заряда р=е||2=е*. При учёте свойств симметрии координатной волновой функции (25), помимо плотности обычного вида

e|a(1)|2|b(2)|2, е|b(1)|2|a(2)Р,

соответствующих движению отдельных электронов у разных ядер, появляется плотность вида

ea*(1)b(1)b*(2)a(2), eb*(1)a(1)a*(2)b(2)

Она наз. обменной плотностью, потому что возникает как бы за счёт обмена электронами между двумя атомами. Именно эта обменная плотность, приводящая к увеличению плотности отрицат. заряда между двумя положительно заряженными ядрами, и обеспечивает устойчивость молекулы в случае кова-лентной химической связи.

Очевидно, что при суммарном спине двух электронов, равном 1, координатная часть волновой функции антисимметрична, т. е. в (25) перед вторым слагаемым стоит знак минус, и обменная плотность имеет отрицательный знак; это означает, что обменная плотность будет уменьшать плотность отрицат. электрич. заряда между ядрами, т. е. приводить как бы