загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

Однако в сер. 20 в. в результате социального прогресса и бурного развития науки и техники роль И. неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной И., получившее название "информационного взрыва". В связи с этим возникла потребность в научном подходе к И., выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия И. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растит, мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу И. (см. Генетическая информация, Кибернетика биологическая). Во-вторых, была предложена количеств, мера И. (работы К. Шеннона, А. Н. Колмогорова и др.), что привело к созданию информации теории.

Более общий, чем прежде, подход к понятию И., а также появление точной количеств, меры И. пробудили огромный интерес к изучению И. С нач. 1950-х гг. предпринимаются попытки использовать понятие И. (не имеющее пока единого определения) для объяснения и описания самых разнообразных явлений и процессов.

Исследование проблем, связанных с научным понятием И., идёт в трёх осн. направлениях. Первое из них состоит в разработке матем. аппарата, отражающего осн. свойства И. (см. Информация в кибернетике).

Второе направление заключается в теоретич. разработке различных аспектов на базе уже имеющихся матем. средств, в исследовании различных свойств И. Напр., уже с момента создания теории И. возникла сложная проблема измерения ценности, полезности И. с точки зрения её использования. В большинстве работ по теории И. это свойство не учитывается. Однако важность его несомненна. В количеств, теории, выдвинутой в 1960 А. А. Харкевичем, ценность И. определяется как приращение вероятности достижения данной цели в результате использования данной И. Близкие по смыслу работы связаны с попытками дать строгое математич. определение количества се-мантич. (т. е. смысловой) И. (Р. Карнап и др.).

Третье направление связано с использованием информационных методов в лингвистике, биологии, психологии, социологии, педагогике и др. В лингвистике, напр., проводилось измерение информативной ёмкости языков. После статистич. обработки большого числа текстов, выполненной с помощью ЭВМ, а также сопоставления длин переводов одного и того же текста на разные языки и многочисл. экспериментов по угадыванию букв текста выяснилось, что при равномерной нагрузке речевых единиц информацией тексты могли бы укоротиться в 4-5 раз. Так был с этой точки зрения установлен факт избыточности естеств. языков и довольно точно измерена её величина, находящаяся в этих языках примерно на одном уровне. В нейрофизиологии информационные методы помогли лучше понять механизм действия осн. закона психофизики - закона Вебера - Фехнера, к-рый утверждает, что ощущение пропорционально логарифму возбуждения. Именно такая зависимость должна иметь место в случае, если нервные волокна, передающие сигналы от акцепторов к мозгу, обладают свойствами, присущими идеализированному каналу связи, фигурирующему в теории И. Значит, роль информационный подход сыграл в генетике и молекулярной биологии, позволив, в частности, глубже осознать роль молекул РНК как переносчиков И. Ведутся также исследования по применению информационных методов в искусствоведении.

Такое разнообразное использование понятия И. побудило нек-рых учёных придать ему общенаучное значение. Основоположниками такого общего подхода к понятию И. были англ, нейрофизиолог У. Р. Эшби и франц. физик Л. Брил-люэн. Они исследовали вопросы общности понятия энтропии в теории И. и термодинамике, трактуя И. как отрицательную энтропию (негэнтропию). Бриллюэн и его последователи стали изучать информационные процессы под углом зрения второго начала термодинамики, рассматривая передачу И. нек-рой системе как усовершенствование этой системы, ведущее к уменьшению её энтропии. В нек-рых филос. работах был выдвинут тезис о том, что И. является одним из основных универсальных свойств материи. Положительная сторона этого подхода состоит в том, что он связывает понятие И. с понятием отражения. См. также ст. Информатика, Информация общественно-политическая, Массовая коммуникация.

Лит.: Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959; Xаркевич А. А., О ценности информации, в сб.: Проблемы кибернетики, в. 4, М., 1960; Шеннон К. Э., Работы по теории информации и кибернетике, пер. с англ., М., 1963; Колмогоров А. Н., Три подхода к определению понятия "количество информации", "Проблемы передачи информации", 1965, т. 1, в. 1; Бриллюэн Л^ Научная неопределённость и информация, пер. с англ., М., 1966; Урсул А. Д., Информация, М., 1971. В. Н. Тростников.

ИНФОРМАЦИЯ общественно-политическая, совокупность сообщений об актуальных новостях внутренней и международной жизни, распространяемых средствами массовой коммуникации и ориентирующих аудиторию в фактах, явлениях, процессах политич., экономич., научной, культурной и пр. жизни общества. В социалистич. обществе к И. предъявляются требованияправдивости и точности изложения правильно отобранных и сгруппированных типических фактов, объективного анализа и комментирования событий и процессов социальной жизни на основе марксистско-ленинской методологии в соответствии с принципом партийности. Коммунистическая партия придаёт важное значение проблеме информированности масс трудящихся с целью их сознательного и активного участия в общественной жизни, а также поступлению фактической и оценочной И. от самих трудящихся о положении дел во всех сферах нар. х-ва и культуры, о мнениях по различным обществ, вопросам; эта "обратная" И. используется для принятия решений на различных уровнях социального управления.

Бурж. пропаганда, стремясь ориентировать массы в своих целях, широко использует методы дезинформации, необъективно излагая факты и сущность событий, замалчивая важные сведения, делая упор на сенсационные сообщения о малозначимых событиях.

В журналистике главными формами оперативной передачи И. являются информационные жанры публицистики - хроника, заметки, репортажи, отчёты, интервью, обзоры.

Лит.: Бровиков В. И., Попович И. В., Современные проблемы политической информации и агитации, М., 1969.

ИНФОРМАЦИЯ (от лат. informatio - разъяснение, изложение), первоначально - сведения, передаваемые одними людьми другим людям устным, письменным или к.-л. другим способом (напр., с помощью условных сигналов, с использованием технич. средств и т. д.), а также сам процесс передачи или получения этих сведений. И. всегда играла в жизни человечества очень важную роль. Однако в сер. 20 в. в результате социального прогресса и бурного развития науки и техники роль И. неизмеримо возросла. Кроме того, происходит лавинообразное нарастание массы разнообразной И., получившее название "информационного взрыва". В связи с этим возникла потребность в научном подходе к И., выявлении её наиболее характерных свойств, что привело к двум принципиальным изменениям в трактовке понятия И. Во-первых, оно было расширено и включило обмен сведениями не только между человеком и человеком, но также между человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растит, мире. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу И. (см. Генетическая информация, Кибернетика биологическая). Во-вторых, была предложена количеств, мера И. (работы К. Шеннона, A. H. Колмогорова и др.), что привело к созданию информации теории.

Более общий, чем прежде, подход к понятию И., а также появление точной количеств, меры И. пробудили огромный интерес к изучению И. С нач. 1950-х гг. предпринимаются попытки использовать понятие И. (не имеющее пока единого определения) для объяснения и описания самых разнообразных явлений и процессов.

Исследование проблем, связанных с научным понятием И., идёт в трёх осн. направлениях. Первое из них состоит в разработке матем. аппарата, отражающего осн. свойства И. (см. Информация в кибернетике).

Второе направление заключается в тео-ретич. разработке различных аспектов И. на базе уже имеющихся матем. средств, в исследовании различных свойств И. Напр., уже с момента создания теории И. возникла сложная проблема измерения ценности, полезности И. с точки зрения её использования. В большинстве работ по теории И. это свойство не учитывается. Однако важность его несомненна. В количеств, теории, выдвинутой в 1960 А. А. Харке-вичем, ценность И. определяется как приращение вероятности достижения данной цели в результате использования данной И. Близкие по смыслу работы связаны с попытками дать строгое математич. определение количества се-мантич. (т. е. смысловой) И. (P. Карнап и др.).

Третье направление связано с использованием информационных методов в лингвистике, биологии, психологии, социологии, педагогике и др. В лингвистике, напр., проводилось измерение информативной ёмкости языков. После ста-тистич. обработки большого числа текстов, выполненной с помощью ЭВМ, а также сопоставления длин переводов одного и того же текста на разные языки и многочисл. экспериментов по угадыванию букв текста выяснилось, что при равномерной нагрузке речевых единиц информацией тексты могли бы укоротиться в 4-5 раз. Так был с этой точки зрения установлен факт избыточности естеств. языков и довольно точно измерена её величина, находящаяся в этих языках примерно на одном уровне. В нейрофизиологии информационные методы помогли лучше попять механизм действия осн. закона психофизики - закона Be-бера - Фехнера, к-рый утверждает, что ощущение пропорционально логарифму возбуждения. Именно такая зависимость должна иметь место в случае, если нервные волокна, передающие сигналы от акцепторов к мозгу, обладают свойствами, присущими идеализированному каналу связи, фигурирующему в теории И. Значит, роль информационный подход сыграл в генетике и молекулярной биологии, позволив, в частности, глубже осознать роль молекул РНК как переносчиков И. Ведутся также исследования по применению информационных методов в искусствоведении.

Такое разнообразное использование понятия И. побудило нек-рых учёных придать ему общенаучное значение. Основоположниками такого общего подхода к понятию И. были англ, нейрофизиолог У. P. Эшби и франц. физик Л, Брил-люэн. Они исследовали вопросы общности понятия энтропии в теории И. и термодинамике, трактуя И. как отрицательную энтропию (негэнтропию). Бриллюэн и его последователи стали изучать информационные процессы под углом зрения второго начала термодинамики, рассматривая передачу И. нек-рой системе как усовершенствование этой системы, ведущее к уменьшению её энтропии. В нек-рых филос. работах был выдвинут тезис о том, что И. является одним из основных универсальных свойств материи. Положительная сторона этого подхода состоит в том, что он связывает понятие И. с понятием отражения. См. также ст. Информатика, Информация общественно-политическая, Массовая коммуникация.

Лит.: Эшби У. P., Введение в кибернетику, пер. с англ., JM., 1959; Xаркевич А. А., О ценности информации, в сб.: Проблемы кибернетики, в. 4, M., 1960; Шеннон К. Э., Работы по теории информации и кибернетике, пер. с англ., M., 1963; Колмогоров A. H., Три подхода к определению понятия "количество информации", "Проблемы передачи информации", 1965, т. 1, в. 1; Бриллюэн JI- Научная неопределённость и информащгя, пер. с англ., M., 1966; Урсул А. Д., Информация, M., 1971. В. H. Тростников.

ИНФОРМАЦИЯ общественно-политическая, совокупность сообщений об актуальных новостях внутренней и международной жизни, распространяемых средствами массовой коммуникации и ориентирующих аудиторию в фактах, явлениях, процессах политич., экономич., научной, культурной и пр. жизни общества. В социалистич. обществе к И. предъявляются требования правдивости и точности изложения правильно отобранных и сгруппированных типических фактов, объективного анализа и хомментирования событий и процессов социальной жизни на основе марксистско-ленинской методологии в соответствии с принципом партийности. Коммунистическая партия придаёт важное значение проблеме информированности масс трудящихся с целью их сознательного и ах-тивного участия в общественной жизни, а также поступлению фактической и оценочной И. от самих трудящихся о положении дел во всех сферах нар. х-ва и культуры, о мнениях по различным обществ, вопросам; эта "обратная" И. используется для принятия решений на различных уровнях социального управления.

Бурж. пропаганда, стремясь ориентировать массы в своих целях, широко использует методы дезинформации, необъективно излагая факты и сущность событий, замалчивая важные сведения, делая упор на сенсационные сообщения о малозначимых событиях.

В журналистике главными формами оперативной передачи И. являются информационные жанры публицистики - хроника, заметки, репортажи, отчёты, интервью, обзоры.

Лит.: Брови ков В. И., Попович И. В., Современные проблемы политической информации и агитации, M., 1969.

ИНФОРМАЦИЯ в кибернетике. Естественнонаучное понимание И. основано на двух определениях этого понятия, предназначенных для различных целей (для информации теории, иначе называемой статистич. теорией связи, и теории статистических оценок). К ним можно присоединить и третье (находящееся в стадии изучения), связанное с понятием сложности алгоритмов.

Центральное положение понятия И. в кибернетике объясняется тем, что кибернетика (ограничивая и уточняя интуитивное представление об И.) изучает машины и живые организмы с точки зрения их способности воспринимать определённую И., сохранять её в "памяти", передавать по "каналам связи"- и перерабатывать её в "сигналы", направляющие их деятельность в соответствующую сторону.

В нек-рых случаях возможность сравнения различных групп данных по содержащейся в них И. столь же естественна, как возможность сравнения плоских фигур по их "площади": независимо от способа измерения площадей можно сказать, что фигура А имеет не большую площадь, чем В, если А может быть целиком помещена в В (ср. примеры 1-3 ниже). Более глубокий факт - возможность выразить площадь числом и на этой основе сравнить между собой фигуры произвольной формы - является результатом развитой математич. теории. Подобно этому, фундаментальным результатом теории И. является утверждение о том, что в определённых весьма широких условиях можно пренебречь качественными особенностями И. и выразить её количество числом. Только этим числом определяются возможности передачи И. по каналам связи и её хранения в запоминающих устройствах.

Пример 1. В классической механике знание положения и скорости частицы, движущейся в силовом поле, в данный момент времени даёт И. о её положении в любой будущий момент времени, притом полную в том смысле, что это положение может быть предсказано точно. Знание энергии частицы даёт И., но, очевидно, неполную.

Пример 2. Равенство

[1025-1-1.jpg]

даёт И. относительно вещественных переменных a и b. Равенство [1025-1-2.jpg]

даёт меньшую И. [т. к. из (1) следует (2), ио эти равенства не равносильны]. Наконец, равенство [1025-1-3.jpg]

равносильное (1), даёт ту же И., то есть (1) и (3) - это различные формы задания одной и той же И.

Пример 3. Результаты произведённых с ошибками независимых измерений к.-л. физич. величины дают И. о её точном значения. Увеличение числа наблюдений увеличивает эту И.

Пример З а. Среднее арифметическое результатов наблюдений также содержит некоторую И. относительно рассматриваемой величины. Как показывает математическая статистика, в случае нормального распределения вероятностей ошибок с известной дисперсией среднее арифметическое содержит всю И.

Пример 4. Пусть результатом нек-рого измерения является случайная величина X. При передаче по нек-рому каналу связи X искажается, в результате чего на приёмном конце получают величину [1025-1-4.jpg] , где [1025-1-5.jpg] не зависит от X (в смысле теории вероятностей). "Выход" Y даёт И. о "входе" X; причём естественно ожидать, что эта И. тем меньше, чем больше дисперсия случайной ошибки[1025-1-6.jpg]

В каждом из приведённых примеров данные сравнивались по большей или меньшей полноте содержащейся в них И. В примерах 1-3 смысл такого сравнения ясен и сводится к анализу равносильности или неравносильности нек-рых соотношений. В примерах 3 а и 4 этот смысл требует уточнения. Это уточнение даётся, соответственно, математич. статистикой и теорией И. (для к-рых эти примеры являются типичными).

В основе теории информации лежит предложенный в 1948 амер. учёным К. Шенноном способ измерения количества И., содержащейся в одном случайном объекте (событии, величине, функции и т. п.) относительно др. случайного объекта. Этот способ приводит к выражению количества И. числом. Положение можно лучше объяснить в простейшей обстановке, когда рассмаг-риваемые случайные объекты являются случайными величинами, принимающими лишь конечное число значений. Пусть X - случайная величина, принимающая значения [1025-1-7.jpg] с вероятностями [1025-1-8.jpg] , a Y - случайная величина, принимающая значения[1025-1-9.jpg] с вероятностями [1025-1-10.jpg]. Тогда И.I(X,Y) относительно У, содержащаяся в X,[1025-1-11.jpg] определяется формулой

где Ptj - вероятность совмещения событий [1025-1-12.jpg] и логарифмы берутся по основанию 2. И. I(X, Y) обладает рядом свойств, к-рые естественно требовать от меры количества И. Так, всегда [1025-1-13.jpg]и равенство[1025-1-14.jpg] возможно тогда и только тогда, когда [1025-1-15.jpg] при всех [1025-1-16.jpg], т. е. когда случайные величины X и Y независимы. Далее, всегда[1025-1-17.jpg] и равенство возможно только в случае, когда Y есть функция от X (напр., [1025-1-18.jpg] и т. д.). Кроме того, имеет место равенство[1025-1-19.jpg] Величина

носит[1025-1-20.jpg] название энтропии случайной величины X. Понятие энтропии относится к числу основных понятий теории И. Количество И. и энтропия связаны соотношением

[1025-1-21.jpg]

где H (X, У) - энтропия пары (X, Y), T. е.

Величина [1025-1-22.jpg] энтропии указывает среднее число двоичных знаков (см. Двоичные единицы), необходимое для различения (или записи) возможных значений случайной величины (подробнее см. Кодирование, Энтропия). Это обстоятельство позволяет понять роль количества И. (4) при "хранения" И. в запоминающих устройствах. Если случайные величины X и Y независимы, то для записи значения X требуется в среднем H(X) двоичных знаков, для значения Y требуется H(Y)

двоичных знаков, а для пары [1025-1-23.jpg] требуется [1025-1-24.jpg] двоичных знаков. Если же случайные величины X и Y зависимы, то среднее число двоичных знаков, необходимое для записи пары [1025-1-25.jpg], оказывается меньшим суммы H(X) + H(Y), т. к.

С помощью [1025-1-26.jpg] значительно более глубоких теорем выясняется роль количества И. (4) в вопросах передачи И. по каналам связи. Основная информационная характеристика каналов, т. н. пропускная способность (или ёмкость), определяется через понятие "И." (подробнее см. Канал).

Если X и Y имеют совместную плотность р(х, у), то

где [1025-1-27.jpg] буквами р и q обозначены плотности вероятности X и Y соответственно. При этом энтропии H (X) и H (Y) не существуют, но имеет место формула, аналогичная (5),

[1025-1-28.jpg]

где

[1025-1-29.jpg]

дифференциальная энтропия [1025-1-30.jpg] определяется подобным же образом].

Пример 5. Пусть в условиях примера 4 случайные величины [1025-1-31.jpg] имеют нормальное распределение вероятностей с нулевыми средними значениями и дисперсиями, равными соответственно [1025-1-32.jpg] и

[1025-1-33.jpg]. Тогда, как молено подсчитать по формулам (6) или (7):

Таким [1025-1-34.jpg] образом, количество И. в "принятом сигнале" Y относительно "переданного сигнала" X стремится к нулю при возрастании уровня "помех" [1025-1-35.jpg] (т. е. при [1025-1-36.jpg] ) и неограниченно возрастает при исчезающе малом влиянии "помех" (т. е. при [1025-1-37.jpg] ).

Особенный интерес для теории связи представляет случай, когда в обстановке примеров 4 и 5 случайные величины X и Y заменяются случайными функциями (или, как говорят, случайными процессами) X (t) и У (t), к-рые описывают изменение нек-рой величины на входе и на выходе передающего устройства. Количество И. в Y (t) относительно X (t) при заданном уровне помех ("шумов", по акустич. терминологии) [1025-1-38.jpg] может служить критерием качества самого этого устройства (см. Сигнал, Шеннона теорема).

В задачах математич. статистики также пользуются понятием И. (ср. примеры 3 и 3 а). Однако как по своему формальному определению, так и по своему назначению оно отличается от вышеприведённого (из теории И.). Статистика имеет дело с большим числом результатов наблюдений и заменяет обычно их полное перечисление указанием нек-рых сводных характеристик. Иногда при такой замене происходит потеря И., но при нек-рых условиях сводные характеристики содержат всю И., содержащуюся в полных данных (разъяснение смысла этого высказывания даётся в конце примера 6). Понятие И. в статистике было введено англ, статистиком P. Фишером в 1921.

Пример 6. Пусть [1025-1-39.jpg] - результаты n независимых наблюдений нек-рой величины, распределённые по нормальному закону с плотностью вероятности

[1025-1-40.jpg]

где параметры [1025-1-41.jpg] (среднее и дисперсия) неизвестны и должны быть оценены по результатам наблюдений. Достаточными статистиками (т. е. функциями от результатов наблюдений, содержащими всю И. о неизвестных параметрах) в этом примере являются [1025-1-42.jpg] среднее арифметическое

и т. н. эмпирическая [1025-1-43.jpg] дисперсия

Если параметр[1025-1-44.jpg]известен, то достаточной статистикой будет только X (ср. пример 3 а выше).

Смысл выражения "вея И." может быть пояснён следующим образом. Пусть имеется к.-л. функция неизвестных параметров[1025-1-45.jpg] и пусть [1025-1-46.jpg] - к.-л. её оценка, лишённая система-тич. ошибки. Пусть качество оценки (её точность) измеряется (как это обычно делается в задачах математич. статистики) дисперсией разности [1025-1-47.jpg] Тогда существует другая оценка [1025-1-48.jpg], зависящая не от отдельных величин Xt, а только от сводных характеристик X и s2, не худшая (в смысле упомянутого критерия), чем [1025-1-49.jpg] . P. Фишером была предложена также мера (среднего) количества И. относительно неизвестного параметра, содержащейся в одном наблюдении. Смысл этого понятия раскрывается в теории ста-тистич. оценок.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., M., 1948; Ван-дер-Варден Б. JI., Математическая статистика, пер. с нем., M., 1960; Кульбак С., Теория информации и статистика, пер. с англ., M., 1967.

Ю. В. Прохоров.

ИНФОРМОСОМЫ, частицы, присутствующие в животных клетках и состоящие из высокомолекулярной (нерибо-сомной) рибонуклеиновой кислоты (РНК) и особого белка. И. обнаружены впервые сов. биохимиком А. С. Спириным с сотрудниками (1964) в цитоплазме зародышей рыб, где они представлены смесью частиц разных размеров с мол. массой 500 тыс.-50 млн. и более. Отношение массы РНК к массе белка в И. постоянно (ок. 1 : 4) и одинаково у всех частиц, независимо от их размера. Аналогичные частицы найдены в клетках млекопитающих, в т. ч. заражённых вирусами, а также у иглокожих и насекомых. В И. содержится, по-видимому, информационная РНК (и-РНК)- отсюда название. Белок И. служит, вероятно, для переноса и-РНК из ядра в цитоплазму, а также для защиты и-РНК от разрушения и регуляции скорости белкового синтеза.

ИНФРАЗВУК (от лат. infra - ниже, под), упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16-25 гц. Нижняя граница инфразвукового диапазона неопределённа. Практич. интерес могут представлять колебания от десятых и даже сотых долей гц, т. е. с периодами в десяток секунд. И. содержатся в шуме атмосферы, леса и моря; их источник - турбулентность атмосферы и ветер (напр., т. н. "голос моря" - инфразвуковые колебания, образующиеся от завихрений ветра на гребнях морских волн). Источником инфразвуковых колебаний являются грозовые разряды (гром), а также взрывы и орудийные выстрелы.

В земной коре наблюдаются сотрясения и вибрации инфразвуковых частот от самых разнообразных источников, в т. ч. от взрывов, обвалов и трансп. возбудителей (см. Сейсмические волны).

Для И. характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практич. применение при определении места сильных взрывов или положения стреляющего орудия. Распространение И. на большие расстояния в море даёт возможность предсказания стихийного бедствия - цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

Приём и измерение И. производятся спец. микрофонами, гидрофонами, геофонами или виброметрами.

Лит.: Шулейкин В. В., Физика моря, 4 изд., M., 1968: Коул Р., Подводные взрывы, пер. с англ., M., 1950.

И. Г. Русаков.

ИНФРАКРАСНАЯ АЭРОСЪЁМКА, ИК-съёмка, съёмка местности с воздуха в невидимых инфракрасных лучах. Различают фотографическую ИК-съёмку в ближней инфракрасной зоне спектра (0,8-1,1 мкм), выполняемую непосредственно на инфрахроматиче-ской аэрофотоплёнке в дневные часы, и фотоэлектронную ИК-съёмку в дальней инфракрасной зоне (1,2-25 мкм, рабочие интервалы 2-5,8-10 и 14- 15 мкм), выполняемую в светлое и тёмное время при помощи специальных съёмочных камер, регистрирующих тепловые излучения земной поверхности и преобразующих их в световые изображения, к-рые автоматич. переснимаются с экрана электроннолучевой трубки на фотоплёнку. При обоих видах ИК-съём-ки получают чёрно-белые аэроснимки, внешне подобные обычным панхроматическим аэроснимкам в видимых лучах (см. рис. 7 на вклейке, табл. XVlII, стр. 352-353).

Фотографич. ИК-снимки из-за особенностей спектрального отражения объектов в данной зоне эффективны для воспроизведения береговых линий и заболоченности, дешифрирования состава смешанных лесов и посевов, определения местных предметов по аэрофотоизображению их теней. Фотоэлектронные ИК-снимки дают существенный эффект при картировании вулканич. и гидротермальных явлений, подземных и лесных пожаров; перспективны для изучения льдов и водных масс (с разделением по температурным характеристикам, загрязнённости и т. д.); дешифрирование нек-рых горных пород, гидрографич. сети под дре-весно-кустарниковым пологом, а также зданий, трубопроводов и др. сооружений, различающихся между собой по тепловым свойствам. По междунар. терминологии, снимки первого вида именуются IR-photography, т. е. ИК-фотографии, второго - IR-imagery, т. е. ИК-изоора-жения. См. также ст. Инфракрасная фотография. Л. M. Голъдман.

ИНФРАКРАСНАЯ ДЕФЕКТОСКОПИЯ, метод дефектоскопии, при к-ром для обнаружения непрозрачных для видимого света неоднородностей в материале используют индюакпасное излучение.

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ, ИК-с пектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в инфракрасной области спектра (см. Инфракрасное излучение). И. с. занимается гл. обр. изучением молекулярных спектров, т. к. в ИК-области расположено большинство колебательных и вращательных спектров молекул. В И. с. наиболее широкое распространение получило исследование ИК-спектров поглощения, к-рые возникают в результате поглощения ИК-излучения при прохождении его через вещество. Это поглощение носит селективный характер и происходит на тех частотах, к-рые совпадают с нек-рыми собственными частотами колебаний атомов в молекулах вещества и с частотами вращения молекул как целого, а в случае кристаллич. вещества - с частотами колебаний кристаллич. решётки. В результате интенсивность ИК-излучения на этих частотах резко падает-образуются полосы поглощения (см. рис.).

[1025-1-50.jpg]

Зависимость интенсивности падающего I0(v) и прошедшего через вещество I(v) излучения. v1, v2, v3,... - собственные частоты вещества; заштрихованные области - полосы поглощения.

Количественная связь между интенсивностью I прошедшего через вещество излучения, интенсивностью падающего излучения Iо и величинами, характеризующими поглощающее вещество, даётся Бугера - Ламберта - Вера законом. На практике обычно ИК-спектр поглощения представляют графически в виде зависимости от частоты v (или длины волны ).) ряда величин, характеризующих поглощающее вещество: коэффициента пропускания T(v) = I(v)/I0(v); коэффициента поглощения A(V) = [Iо(v)- -I(v)]/Io(v) = 1 - T(V); оптической плотности D(v)= ln[1/T(v)]=x(v)cl, где x(v)- показатель поглощения, с - концентрация поглощающего вещества, l - толщина поглощающего слоя вещества. Поскольку D(V) пропорциональна x(v) и с, она обычно применяется для количественного анализа по спектрам поглощения.

Основные характеристики спектра ИК-поглощения: число полос поглощения в спектре, их положение, определяемое частотой v (или длиной волны[1025-1-51.jpg]), ширина и форма полос, величина поглощения - определяются природой (структурой и химическим составом) поглощающего вещества, а также зависят от агрегатного состояния вещества, температуры, давления и др. Изучение колебательно-вращательных и чисто вращательных спектров методами И. с. позволяет определять структуру молекул, их химич. состав, моменты инерции молекул, величины

сил, действующих между атомами в молекуле, и др. Вследствие однозначности связи между строением молекулы и её молекулярным спектром И. с. широко используется для качественного и количественного анализа смесей различных веществ (напр., моторного топлива). Изменения параметров ИК-спектров (смещение полос поглощения, измекение их ширины, формы, величины поглощения), происходящие при переходе из одного агрегатного состояния в другое, растворении, изменении температуры и давления, позволяют судить о величине и характере межмолекулярных взаимодействий.

И. с. находит применение в исследовании строения полупроводниковых материалов, полимеров, биологич. объектов и непосредственно живых клеток. Быстродействующие спектрометры позволяют получать спектры поглощения за доли секунды и используются при изучении быстропротекающих химич. реакций. С помощью специальных зеркальных микроприставок можно получать спектры поглощения очень малых объектов, что представляет интерес для биологии и минералогии. И. с. играет большую роль в создании и изучении молекулярных оптич. квантовых генераторов, излучение к-рых лежит в инфракрасной области спектра. Методами И. с. наиболее широко исследуются ближняя и средняя области ИК-спектра, для чего изготовляется большое число разнообразных (гл. обр. двухлучевых) спектрометров. Далёкая ИК-область освоена несколько меньше, но исследование ИК-спектров в этой области также представляет большой интерес, т. к. в ней, кроме чисто вращательных спектров молекул, расположены спектры частот колебаний кристал-лич. решёток полупроводников, межмолекулярных колебаний и др.

Лит.: Кросс А., Введение в практическую инфракрасную спектроскопию, пер. с англ., M., 1961; Беллами Jl., Инфракрасные спектры молекул, пер. с англ., M., 1957; Ярославский H. Г., Методика и аппаратура длинноволновой инфракрасной спектроскопии. "Успехи физических наук", 1957, т. 62, в. 2; Применение спектроскопии в химии, пер. с англ., M., 1959; Ч у л а-новский В. M., Введение в молекулярный спектральный анализ, 2 изд., M,- Л., 1951. В. И. Малышев.

ИНФРАКРАСНАЯ ТЕХНИКА, ИК- техника, область прикладной физики и техники, включающая разработку и применение в научных исследованиях, на производстве и в военном деле приборов, действие к-рых основано на использовании инфракрасного излучения и его физических свойств. К И. т. относятся: приборы для обнаружения и измерения инфракрасного излучения (см. Приёмники излучения), приборы для наблюдения (см. Видиконы, Электронно-оптические преобразователи) и фотографирования в темноте (см. Инфракрасная фотография), приборы для дистанционного измерения темп-ры нагретых тел по их тепловому излучению (см. Пирометры), приборы для скрытой сигнализации, земной и космической связи, инфракрасные прицелы, дальномеры, приборы для обнаружения наземных, морских и воздушных целей по их собственному тепловому инфракрасному излучению (теплопеленгаторы, приборы ночного видения), устройства для самонаведения на цель снарядов и ракет. В более широком понимании к И. т. можно также отнести разработку и создание приёмников н источников инфракрасного излучения (включая создание оптических квантовых генераторов инфракрасного диапазона), разработку светофильтров для выделения инфракрасного излучения, материалов, прозрачных: в инфракрасной области спектра, создание приборов для получения инфракрасных спектров поглощения и испускания (см. Инфракрасная спектроскопия) и др. Лит.: Козелки н В. В., Усольцев И. Ф., Основы инфракрасной техники, M.. 1967; КрузП., Макглоу-лин Л., Макквистан P., Основы инфракрасной техники, пер. с англ., M., 1964; Марголин И. А., Румянцев H. M., Основы инфракрасной техники, 2 изд., M., 1957. В.И.Малышев.

ИНФРАКРАСНАЯ ФОТОГРАФИЯ, ИК-ф отография, получение фотоснимков в инфракрасном излучении. Фотоснимки в ИК-излучении можно получать различными методами. Наиболее прост метод непосредственного фотографирования на фотопластинки и плёнки, чувствительные к ИК-излучению (инфра-плёнки или пластинки). При этом на объектив фотоаппарата устанавливают светофильтр, пропускающий ИК-излу-чение и непрозрачный для видимого света. Длинноволновая граница чувствительности [1025-1-52.jpg] совр. инфрафотоматериалов.

Чувствительность инфраплёнок и пластинок относительно мала, поэтому для И. ф. в условиях малой освещённости применяют приборы, состоящие из электронно-оптического преобразователя и обычного фотоаппарата. Электронно-оптич. преобразователь, установленный перед объективом фотоаппарата, преобразует невидимое инфракрасное изображение в видимое и одновременно усиливает его яркость. Такие приборы позволяют получать снимки на обычной фотоплёнке в полной темноте при небольшой мощности облучающего источника ИК-из-лучения. Длинноволновая граница прибора определяется фотокатодом преобразователя и не превышает[1025-1-53.jpg]

С помощью спец. приборов можно получать И. ф. в области[1025-1-54.jpg] Один из них - инфракрасный види-кон - представляет собой телевизионную систему, у к-рой экран передающей трубки изготовлен из фотопроводящих полупроводниковых материалов, изменяющих свою электропроводность под действием ИК-излучения. Получаемое на экране приёмной трубки видимое телевизионное изображение фотографируется обычным фотоаппаратом. Длинноволновая граница видикона зависит от природы материала фотопррводящего экрана и его темп-ры: при T = 79 К (охлаждение жидким азотом)[1025-1-55.jpg] , а при T = 21 К (охлаждение жидким водородом) [1025-1-56.jpg] ~ 20 MKM.

И. ф. позволяет получать дополнительную (по сравнению с фотографией в видимом свете или при рассматривании объекта глазом) информацию об объекте (см. рис. 1-9 на вклейке, табл., XVIII, стр. 352-353). T. к. ИК-излучение рассеивается при прохождении через дымку и туман меньше, чем видимое излучение, И. ф. позволяет получать чёткие снимки предметов, удалённых на сотни км (рис. 1). Благодаря различию коэффициентов отражения и пропускания в видимом и инфракрасном диапазонах на И. ф. можно увидеть детали, не видимые глазом и на обычной фотографии (рис. 2, 3). Эти особенности И. ф. широко используются в ботанике - при изучении болезней растений (рис. 4), в медицине - при диагностике кожных и сосудистых заболеваний (рис. 5), в криминалистике - при обнаружении подделок (рис. 6), в инфракрасной аэросъёмке (рис. 7), в астрономии - при фотографировании звёзд и туманностей (рис. 8). И. ф. можно получать в полной темноте (рис. 9).

Существуют приборы, фиксирующие тепловое ИК-излучение объекта, в разных точках к-рого темп-pa различна. Интенсивность ИК-излучения в каждой точке изображения регистрируется приёмником и преобразуется в световой сигнал, к-рый фиксируется на фотоплёнке. Изображение, получаемое в этом случае, не является И. ф. в обычном смысле, т. к. оно даёт лишь картину распределения темп-ры по поверхности объекта. Такие приборы применяют для обнаружения перегретых участков машин, при ИК-аэросъёмке для получения термальных карт местности и др.

Лит.: Clark W., Photography Ъу infrared, 2 ed., N. Y., 1946 (см. также лит. к ст. Инфракрасное излучение).

В. И. Малышев.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, ИК- излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1025-1-57.jpg] = 0,74 мкм) и коротковолновым радиоизлучением ([1025-1-58.jpg]~ 1-2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю ([1025-1-59.jpg] от 0,74 до 2,5мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм).

И. и. было открыто в 1800 англ, учёным В. Гершелем, к-рый обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) темп-pa термометра повышается (рис. 1). В 19 в. было доказано, что И. и. подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 сов. физик А. А. Глаголева-Аркадьева получила радиоволны с [1025-1-61.jpg] ~ ~80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. T. о., экспериментально было доказано, что существует непрерывный переход от видимого излучения к И. и. и радиоволновому и, следовательно, все они имеют электромагнитную природу.

[1025-1-60.jpg]

Рис. 1. Опыт В. Гершеля. Термометр, помещённый за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.


Спектр И. и., так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника И. и. Возбуждённые атомы или ионы испускают линейчатые инфракрасные спектры. Напр., при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014-2,326 мкм; атомы водорода - ряд линий в интервале 0,95- 7,40 мкм. Возбуждённые молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями (см. Молекулярные спектры). Колебательные и колебательно-вращательные спектры расположены гл. обр.
[1025-1-62.jpg]

Рис. 2. Кривая пропускания атмосферы в области 0,6 -14 мкм. Полосы - "окна" прозрачности: 2,0-2,5 мкм, 3,2-4,2 мкм, 4,5-5,2 мкм, 8,0-13,5 мкм. Полосы поглощения с максимумами при [1025-1-63.jpg] ; 1,13; 1,40; 1,87; 2,74 мкм принадлежат парам воды; при [1025-1-64.jpg] = 2,7 и 4,26 мкм - углекислому газу и при [1025-1-65.jpg]мкм - озону.

в средней, а чисто вращательные- в далёкой инфракрасной области. Так, напр., в спектре излучения газового пламени наблюдается полоса ок. 2,7 мкм, испускаемая молекулами воды, и полосы с [1025-1-66.jpg] и [1025-1-67.jpg] , испускаемые молекулами углекислого газа. Нагретые твёрдые и жидкие тела испускают непрерывный инфракрасный спектр. Нагретое твёрдое тело излучает в очень широком интервале длин волн. При низких темп-pax (ниже 800 К) излучение нагретого твёрдого тела почти целиком расположено в инфракрасной области и такое тело кажется тёмным. При повышении темп-ры доля излучения в видимой области увеличивается и тело вначале кажется тёмно-красным, затем красным, жёлтым и, наконец, при высоких темп-рах (выше 5000 К) - белым; при этом возрастает как полная энергия излучения, так и энергия И. и.

Оптические свойства веществ (прозрачность, коэфф. отражения, коэфф. преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптич. свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях И. и. и наоборот. Напр., слой воды толщиной в неск. см непрозрачен для И. и. с [1025-1-68.jpg] мкм (поэтому вода часто используется как теплозащитный фильтр), пластинки германия и кремния, непрозрачные в видимой области, прозрачны в инфракрасной (германий для [1025-1-69.jpg] кремний для [1025-1-70.jpg]). Чёрная бумага прозрачна в далёкой инфракрасной области. Вещества, прозрачные для И. и. и непрозрачные в видимой области, используются в качестве светофильтров для выделения И. и. Ряд веществ даже в толстых слоях (неск. ел) прозрачен в достаточно больших участках инфракрасного спектра. Из таких веществ изготовляются различные оптич. детали (призмы, линзы, окна и пр.) инфракрасных приборов. Напр., стекло прозрачно до 2,7 мкм, кварц - до

4,0 мкм и от 100 мкм до 1000 мкм, каменная соль - до 15 мкм, йодистый цезий - до 55 мкм. Полиэтилен, парафин, тефлон, алмаз прозрачны для[1025-1-71.jpg] У большинства металлов отражат. способность для И. и. значительно больше, чем для видимого света, и возрастает с увеличением длины волны И. и. (см. Металлооптика). Напр., коэфф. отражения Al, Au, Ag, Cu при[1025-1-72.jpg] достигает 98%. Жидкие и твёрдые неме-таллич. вещества обладают в И. и. селективным отражением, причём положение максимумов отражения зависит от химич. состава вещества.

Проходя через земную атмосферу, И. и. ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают И. и. и ослабляют его лишь в результате рассеяния, к-рое, однако, для И. и. значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают И. и. Особенно сильно поглощают И. и. пары воды, полосы поглощения к-рых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области - углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число чокон", прозрачных для И. и. (рис. 2). Наличие в атмосфере взвешенных частиц - дыма, пыли, мелких капель воды (дымка, туман) - приводит к дополнительному ослаблению И. и. в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны И. и. При малых размерах частиц (воздушная дымка) И. и. рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густоь туман) И. и. рассеивается так же сильно, как и видимое.

Источники И. и. Мощным источником И. и. является Солнце, около 50% излучения к-рого лежит в инфракрасной области. Значительная доля (от 70 до 80% ) энергии излучения ламп накаливания с вольфрамовой нитью приходится на И. и. (рис. 3). При фотографировании в темноте и в нек-рых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, к-рый пропускает только И. и. Мощным источником И. и. является угольная электрич. дуга с темп-рой ~ 3900 К, излучение к-рой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до, темп-ры ~950 К. Для лучшей концентрации И. и. такие нагреватели снабжаются рефлекторами. В научных исследованиях, напр., при получении спектров инфракрасного поглощения в разных областях спектра применяют спец. источники И. и.: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение нек-рых оптических квантовых генераторов - лазеров также лежит в инфракрасной области спектра; напр., излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм, лазера на смеси неона и гелия - 1,15 мкм и 3,39 мкм, лазера на углекислом газе - 10,6 мкм, полупроводникового лазера на InSb - 5 мкм и др.

[1025-1-73.jpg]

Рис. 3. Кривые излучения абсолютно чёрного тела Л и вольфрама В при температуре 2450 К. Заштрихованная часть - излучение вольфрама в инфракрасной области; интервал 0,4-0,74 мкм - видимая область.


Приёмники инфракрасного излучения основаны на преобразовании энергии И. и. в другие виды энергии, к-рые могут быть измерены обычными методами. Существуют тепловые и фотоэлектрич. приёмники И. и. В первых поглощённое И. и. вызывает повышение темп-ры термочувствительного элемента приёмника, к-pqe и регистрируется. В фотоэлектрич. приёмниках поглощённое И. и. приводит к появлению или изменению электрического тока или напряжения. Фотоэлектрич. приёмники, в отличие от тепловых, являются селективными приёмниками, т. е. чувствительными лишь в определённой области спектра. Специальные фотоплёнки и пластинки - инфрапластин-ки - также чувствительны к И. и. (до [1025-1-74.jpg] = 1,2 мкм), и потому в И. и. могут быть получены фотографии.

Применение И. и. И. и. находит широкое применение в научных исследованиях, при решении большого числа практич. задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, напр, моторного топлива (см. Инфракрасная спектроскопия ).

Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и И. и. фотография, полученная в И. и., обладает рядом особенностей по сравнению с обычной фотографией. Напр., на инфракрасных снимках часто видны детали, невидимые на обычной фотографии (см. ст. Инфракрасная фотография и рис. 1-9 на вклейке, табл. XVIII, стр. 352-353).

В промышленности И. и. применяется для сушки и нагрева материалов и изделий^ при их облучении (см. Инфракрасный нагрев), а также для обнаружения скрытых дефектов изделий (см. Дефектоскопия).

На основе фотокатодов, чувствительных к И. и. (для [1025-1-75.jpg]< 1,3 мкм), созданы специальные приборы - электронно-оптические преобразователи, в к-рых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов И. и. от спец. источников вести наблюдение или прицеливание в полной темноте. Создание высокочувствит. приёмников И. и. позволило построить спец. приборы - теплопеленгаторы для обнаружения и пеленгации объектов, темп-pa к-рых выше темп-ры окружающего фона (нагретые трубы кораблей, двигатели самолётов, выхлопные трубы танков и др.), по их собственному тепловому И. и. На принципе использования теплового излучения цели созданы также системы самонаведения на цель снарядов и ракет. Специальная оптич. система и приёмник И. и., расположенные в головной части ракеты, принимают И. и. от цели, темп-pa к-рой выше темп-ры окружающей среды (напр., собственное И. и. самолётов, кораблей, заводов, тепловых электростанций), а автоматическое следящее устройство, связанное с рулями, направляет ракету точно в цель. Инфракрасные локаторы и дальномеры позволяют обнаруживать в темноте любые объекты и измерять расстояния до них.

Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.

Лит.; Леконт Ж., Инфракрасное излучение, пер. с франц., M-, 1958; Дерибере M-, Практические применения инфракрасных лучей, пер. с франц., M.- Л., 1959; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, M., 1967; Соловьёв С. M., Инфракрасная фотография, M., 1960; Лебедев П. Д., Сушка инфракрасными лучами, M.- Л., 1955. В. И. Малышев.
1027.htm
ИОНИЗАЦИОННАЯ КАМЕРА, прибор для исследования и регистрации ядерных частиц и излучений, действие к-рого основано на способности быстрых заряженных частиц вызывать ионизацию газа. И. к. представляет собой воздушный или газовый электрич. конденсатор, к электродам к-рого приложена разность потенциалов V. При попадании ионизирующих частиц в пространство между электродами там образуются электроны и ионы газа, к-рые, перемещаясь в электрич. поле, собираются на электродах и фиксируются регистрирующей аппаратурой. Наиболее простой является И. к. с параллельными плоскими электродами (дисками). Диаметр диска в неск. раз превышает расстояние между ними. В цилиндрич. И. к. электроды - два коаксиальных цилиндра, один из к-рых заземлён и служит корпусом И. к. (рис. 1). Сферич. И. к. состоит из 2 концентрич. сфер (иногда внутр. электрод - стержень).

Различают И. к. токовые и импульсные. В токовых И. к. гальванометром измеряется сила тока I, создаваемого электронами и ионами (рис. 2). Зависимость I от V (рис. 3) - вольтамперная характеристика И. к. - имеет горизонтальный участок AB, где ток не зависит от напряжения (ток насыщения I0). Это соответствует полному собиранию на электродах И. к. всех образовавшихся электронов и ионов. Участок. AB обычно является рабочей областью И. к. Токовые И. к. дают сведения об общем интегральном количестве ионов, образовавшихся в 1 сек. Они обычно используются для измерения интенсивности излучений и для дозиметрич. измерений (см. Дозиметрические приборы). T. к. ионизационные токи в И. к. обычно малы (10-10 - 10-15 а), то они усиливаются с помощью усилителей постоянного тока.
[1026-1-1.jpg]

Рис. 1. Сечение цилиндрической ионизационной камеры : 1 - цилиндрич. корпус камеры, служащий отрицательным электродом; 2 - цилиндрич. стержень, служащий положительным электродом; 3 - изоляторы.
[1026-1-2.jpg]

Рис. 2. Схема включения токовой ионизационной камеры: V - напряжение на электродах камеры; G - гальванометр, измеряющий ионизационный ток.
[1026-1-3.jpg]

Рис. 3. Вольтамдер-нал характеристика ионизационной камеры.





Рис. 4. Схема включения импульсной ионизационной камеры: С - ёмкость собирающего электрода; R - сопротивление.

[1026-1-4.jpg]

В импульсных И. к. регистрируются и измеряются импульсы напряжения, к-рые возникают на сопротивлении R (рис, 4) при протекании по нему ионизац. тока, вызванного прохождением каждой частицы. Амплитуда и длительность импульсов зависят от величины R, а также от ёмкости С (рис. 4). Для импульсной И. к., работающей в области тока насыщения, амплитуда импульса пропорциональна энергии [1026-1-5.jpg], потерянной частицей: в объёме И. к. Обычно объектом исследования для импульсных И. к. являются сильно ионизирующие короткопробежные частицы, способные полностью затормозиться в межэлектродном пространстве (a-частицы, осколки делящихся ядер). В этом случае величина импульса И. к. пропорциональна полной энергии частицы и распределение импульсов по амплитудам воспроизводит распределение частиц по энергиям, т. е. даётэнергетич. спектр частиц. Важная характеристика импульсной И. к.- её разрешающая способность, т. е. точность измерения энергии отд. частицы. Для ct-частиц с энергией 5 Мэв разрешающая способность достигает 0,5%.

В импульсном режиме работы важно максимально сократить время т срабатывания И. к. Подбором величины R можно добиться того, чтобы импульсы И. к. соответствовали сбору только электронов, гораздо более подвижных, чем ионы. При; этом удаётся значительно уменьшить длительность импульса и достичь[1026-1-6.jpg]~ 1 мксек.

Варьируя форму электродов И. к.,. состав и давление наполняющего её газа, обеспечивают наилучшие условия для регистрации определённого вида излучений. В И. к. для исследования коротко-пробежных частиц источник помещают внутри камеры или в корпусе делают тонкие входные окошки из слюды или синтетич. материалов. В И. к. для исследования гамма-излучений ионизация обусловлена вторичными электронами, выбитыми из атомов газа или стенок И. к. Чем больше объём И. к., тем больше ионов образуют вторичные электроны. Поэтому для измерения [1026-1-7.jpg]-излучений малой интенсивности применяют И. к. большого-объёма (неск. л и более).

И. к. может быть использована и для измерений нейтронов. В этом случае ионизация вызывается ядрами отдачи (обычно протонами), создаваемыми быстрыми нейтронами, либо [1026-1-8.jpg]-частицами...

протонами или гамма-квантами возникающими при захвате медленных нейтронов ядрами 10B, 3He, 113Cd. Эти вещества вводятся в газ или стенки И. к. Для исследования частиц, создающих малую плотность ионизации, используются И. к. с газовым усилением (см. Пропорциональный счётчик). И. к, применяют также при исследовании космич. лучей (см. Калориметр ионизационный).

Лит.: Калашникова В. И., Козодаев M. С., Детекторы элементарных частиц, M., 1966 (Экспериментальные методы ядерной физики, ч. 1); Альфа-, бета-и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 1, M., 1969. К. П. Митаофанов.

ИОНИЗАЦИОННЫЙ МАНОМЕТР, ионизационный вакуумметр, манометр, действие к-рого основано на измерения интенсивности ионизации газа, пропорциональной измеряемому давлению. См. Вакуумметры.

ИОНИЗАЦИОННЫЙ ПОТЕНЦИАЛ, потенциал ионизации, физическая величина, определяемая отношением наименьшей энергии, необходимой для однократной ионизации атома (или молекулы), находящегося в основном состоянии, к заряду электрона. И. п.- мера энергии ионизации, к-рая равна работе вырывания электрона из атома или молекулы и характеризует прочность связи электрона в атоме или молекуле. И. п. принято выражать в в, численно он равен энергии ионизации в эв.

Значения И. п. могут быть определены экспериментально при исследовании ионизации, вызываемой электронным ударом (см. Франка - Герца опыт), а также измерением энергии фотонов при фотоионизации. Наиболее точные значения И. п. для атомов и простейших молекул могут быть получены из спектроскопия, данных об уровнях энергии и их схождении к границе ионизации (см. Атом).

Для атомов значения первого И. п., соответствующего удалению наиболее слабо связанного электрона из нейтрального атома в основном состоянии, составляют от З,894 в для Cs до 24,587 в для Не. Они периодически изменяются в зависимости от атомного номера Z (см. рис.). Первые И. п. молекул того же порядка величины, что и для атомов, и обычно составляют от 5 до 15 в. И. п. возрастает при повышении степени ионизации атома. Напр., И. п. для нейтрального атома Li равен 5,392 в (первый И. п.), для Li+-75,638 в (второй И. п.) и для Li++-122,451 в (третий И. п.).
[1026-1-9.jpg]

Кривая изменения ионизационных потенциалов в зависимости от атомного номера Z. С увеличением Z значение ионизационного потенциала в пределах одного периода возрастает, а в пределах одной группы-падает. Точки на кривой соответствуют химическим элементам.


Лит.: Шпольский Э. В., Атомная физика, т. 1, 5 изд., M., 1963; Moore Ch. E., lonization potentials and ionization limits derived from the analysis of optical spectra, NSRDS-NBS 34, Wash., 1970.

M. А. Ельяшевич.

ИОНИЗАЦИЯ, образование положит, и отрицат. ионов и свободных электронов из электрически нейтральных атомов и молекул. Термином "И." обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов (И. газа, жидкости).

1) И. в газе и жидкости. Для разделения нейтрального невозбуждённого атома (молекулы) на две или более заряженные частицы, т. е. для его И., необходимо затратить энергию И. W. Для всех атомов данного элемента (или молекул данного химич. соединения), ионизующихся из осн. состояния одинаковым образом (с образованием одинаковых ионов), энергия И. одинакова. Простейший акт И.- отщепление от атома (молекулы) одного электрона и образование положит, иона. Свойства частицы по отношению к такой И. характеризуют её ионизационным потенциалом, представляющим собой энергию И., делённую на заряд электрона.

Присоединение электронов к нейтральным атомам или молекулам (образование отрицат. иона), в отличие от др. актов И., может сопровождаться как затратой, так и выделением энергии; в последнем случае говорят, что атомы (молекулы) данного вещества обладают сродством к электрону.

Если энергия И. W сообщается ионизуемой частице др. частицей (электроном, атомом или ионом) при их столкновении, то И. наз. ударной. Вероятность ударной И. (характеризуемая эффективным поперечным сечением И.) зависит от рода ионизуемых и бомбардирующих частиц и от кинетич. энергии последних Ек: до нек-рого минимального (порогового) значения Eк эта вероятность равна нулю, при увеличении Як выше порога она вначале быстро возрастает, достигает максимума, а затем убывает (рис. 1). Если энергии, передаваемые ионизуемым частицам в столкновениях, достаточно велики, возможно образование из них, наряду с однозарядными, и многозарядных ионов (многократная И.) (рис. 2). При столкновениях атомов и ионов с атомами может происходить И. не только бомбардируемых, но и бомбардирующих частиц. Это явление известно под названием "обдирки" пучка частиц; налетающие нейтральные атомы, теряя свои электроны, превращаются в ионы, а у налетающих ионов заряд увеличивается. Обратный процесс - захват электронов от ионизуемых частиц налетающими положит, ионами наз. перезарядкой ионов (см. также Столкновения атомные).

В определенных условиях частицы могут ионизоваться и при столкновениях, в к-рых передаётся энергия, меньшая W: сначала атомы (молекулы) возбуждаются ударами, после чего для их И. достаточно сообщить им энергию, равную разности W и энергии возбуждения. T. о., "накопление" необходимой для И. энергии осуществляется в неск. последовательных столкновениях. Подобная И. наз. ступенчатой. Она возможна, если столкновения происходят столь часто, что частица в промежутке между двумя соударениями не успевает потерять энергию, полученную в первом из них (достаточно плотные газы, высокоинтенсивные потоки бомбардирующих частиц). Кроме того, механизм ступенчатой И. очень существен в случаях, когда частицы ионизуемого вещества обладают метастабильными состояниями, т. е. способны относительно долгое время сохранять энергию возбуждения.
[1026-1-10.jpg]

Рис. 1. Ионизация атомов и молекул водорода электронным ударом: 1 - атомы H; 2 - молекулы На (экспериментальные кривые).
[1026-1-11.jpg]

Рис. 2. Ионизация аргона ионами Не+.. На оси абсцисс отложена скорость ионизующих частиц. Пунктирные кривые - ионизация аргона электронным ударом.

И. может вызываться не только частицами, налетающими извне. Когда энергия теплового движения атомов (молекул) вещества достаточно велика, они могут ионизовать друг друга при взаимных столкновениях - происходит термическая И. Значит, интенсивности она достигает при темп-рах ~ 103 - 10 К, напр, в пламени, в дуговом разряде, ударных волнах, в звёздных атмосферах. Степень термич. И. газа как функцию его темп-ры и давления можно оценить из термодинамич. соображений (см. Саха формула).

Процессы, в к-рых ионизуемые частицы получают энергию И. от фотонов (квантов электромагнитного излучения), наз. фотоионизацией. Если атом (молекула) невоэбуждён, то энергия ионизующего фотона hv (h - Планка постоянная, v - частота излучения) должна быть не меньше энергии И. W. Для всех атомов и молекул в газах и жидкостях W такова, что этому условию удовлетворяют лишь ультрафиолетовые и более жёсткие фотоны. Однако фотоионизацию наблюдают и при hv
Если разность hv-W относительно невелика, то фотон поглощается в акте И. Фотоны больших энергий (рентгеновские, гамма-кванты), затрачивая при И. часть энергии ЛЕ, изменяют свою частоту на величину дельта v = дельта E/h (см. Комптона эффект). Такие фотоны, проходя через вещество, могут вызвать большое число актов фотоионизации. Разность дельта Е-W (или hv-W при поглощении фотона) превращается в кинетич. энергию продуктов И., в частности свободных электронов, к-рые могут совершать вторичные акты И. (уже ударной).

Большой интерес представляет И. лазерным излучением. Его частота, как правило, недостаточна для того, чтобы поглощение одного фотона вызвало И. Однако чрезвычайно высокая плотность потока фотонов в лазерном пучке делает возможной И., обусловленную одновременным поглощением неск. фотонов (многофотонная И.). Экспериментально в разреженных парах щелочных металлов наблюдалась И. с поглощением 7-9 фотонов. В более плотных газах лазерная И. происходит комбинированным образом. Сначала многофотонная И. освобождает неск. "затравочных" электронов. Они разгоняются полем световой волны, ударно возбуждают атомы, к-рые затем ионизуются светом, но с поглощением меньшего числа фотонов.

Фотоионизация играет существенную роль, напр., в процессах И. верхних слоев атмосферы (см. Ионосфера), в образовании стримеров при пробое электрическом газа и т. д.

Ионизованные газы и жидкости обладают электропроводностью, что, с одной стороны, лежит в основе разнообразных применений процессов И., а с др. стороны, даёт возможность измерять степень И. этих сред, т. е. отношение концентрации заряженных частиц в них к исходной концентрации нейтральных частиц.

Процессом, обратным И., является рекомбинация ионов и электронов - образование из них нейтральных атомов и молекул. Защищённый от внешних воздействий газ при обычных темп-рах в результате рекомбинации очень быстро переходит в состояние, в к-ром степень его И. пренебрежимо мала. Поэтому поддержание заметной И. в газе возможно лишь при действии внешнего ионизатора (потоки частиц, фотонов, нагревание до высокой темп-ры). При определённой концентрации заряженных частиц ионизованный газ превращается в плазму, резко отличающуюся по своим свойствам от газа нейтральных частиц.

Особенность И. жидких растворов состоит в том, что в них молекулы растворённого вещества распадаются на ионы уже в самом процессе растворения без всякого внешнего ионизатора, за счёт взаимодействия с молекулами растворителя. Взаимодействие между молекулами приводит к самопроизвольной И. и в нек-рых чистых жидкостях (вода, спирты, кислоты). Этот дополнит, механизм И. в жидкостях наз. электролитической диссоциацией.

2) И. в твёрдом т