загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

лопитателя, сверлильного станка (при использовании деревянных шпал), цепного конвейера, сборочного станка и тележек для приёмки готовых звеньев. Шпалопитатель подаёт шпалы на конвейер, откуда они поступают в сверлильный станок для рассверливания и антисептирования отверстий под костыли. Затем шпалы подаются на продольный цепной конвейер, на к-ром раскладывают подкладки, укладывают рельсы и предварительно вставляют костыли. В сборочном станке на каждой шпале запрессовывают костыли. Готовые звенья укладывают на тележки Б пакеты по 3-4 звена. 3. м. выпускаются полу-автоматич. с раскладкой подкладок и установкой костылей вручную и полностью автоматизированные. Производительность автоматизир. 3. м. 0,2 км/ч, полуавтоматич. -0,5 км рельсо-шпальной решётки в смену (8 ч). Разрабатываются (1971) 3. м. для сборки звеньев на железобетонных шпалах.



"ЗВЕНЬЯ", сборники материалов и документов по истории лит-ры, иск-ва и обществ. мысли 19 в. Изд. 8 томов (т. 1-6, 1932-36; т. 8-9, 1950-51; т. 7 не вышел). Подготовлены Гос. лит. музеем. В редактировании участвовали В. Д. Бонч-Бруевич, А. В. Луначарский, Б. П. Козьмин и др. В "3." печатался архивный материал и отд. исследовательские статьи и заметки гл. обр. на ист.-лит. темы. Большое место занимают материалы об А. С. Пушкине, А. И. Герцене, Н. П. Огарёве, Н. Г. Чернышевском, Н. А. Некрасове, Ф. М. Достоевском,Л. Н. Толстом, М. Е. Салтыкове-Щедрине. Публикации снабжены вводными статьями и комментариями.

ЗВЕРЕВ Митрофан Степанович [р.3(16). 4.1903, Воронеж], советский астроном, чл.-корр. АН СССР (1953). Чл. КПСС с 1947. Окончил Моск. ун-т (1931) и Моск. консерваторию (1929). В 1931-51 работал в Моск. ун-те (с 1948-профессор); с 1951 зам. директора Пулковской обсерватории. Составил ряд звёздных каталогов. 3.- инициатор и руководитель междунар. работы по составлению Каталога слабых звёзд. Осн. труды по службе времени, гравиметрии и переменным звёздам. Награждён орденом Ленина, 2 др. орденами, а также медалями.

Соч.: Исследование результатов астрономических наблюдений Службы времени ГАИШ в 1941-44 гг., "Тр. Гос. астрономического ин-та им. П. К. Штернберга", 1950, т. 18, в. 2; Предварительный сводный Каталог фундаментальных слабых звёзд со склонениями от +90° до -20° (ПФКСЗ), "Тр. Главной астрономической обсерватории АН СССР", 1958, т. 72 (совм. с Д. Д. Поло-женцевым); Пять лет работы астрономической экспедиции Пулковской обсерватории в Чили, "Изв. Главной астрономической обсерватории", 1970, № 185.

ЗВЕРЕВ Сергей Алексеевич [р.5(18).10. 1912, д. Софронково, ныне Демянского р-на Новгородской обл.], советский гос. деятель. Чл. КПСС с 1942. Род. в семье рабочего. Трудовую деятельность начал в 1930 рабочим. В 1936 окончил Ленингр. ин-т точной механики и оптики. В 1936-47 на руководящей хоз. работе (инженер-конструктор, гл. инженер, зам. директора з-да). В 1947-58 на руководящей работе в Мин-вах вооружения СССР и оборонной пром-сти СССР (гл. инженер, нач. гл. упр., зам. министра). В 1958-63 зам. пред., 1-й зам. пред. Гос. к-та Сов. Мин. СССР по оборонной технике. В 1963-65 пред. Гос. к-та по оборонной технике СССР - министр СССР. С марта 1965 министр оборонной пром-сти СССР. На 23-м (1966) и 24-м (1971) съездах КПСС избирался чл. ЦК КПСС. Деп. Верх. Совета СССР 7-8-го созывов. Гос. пр. СССР (1971). Награждён 5 орденами Ленина, 5 др. орденами, а также медалями.



ЗВЕРЕВО, посёлок гор. типа на 3. Ростовской обл. РСФСР. Узловая ж.-д. станция в 15 км к В. от г. Гуково. 17 тыс. жит. (1970). Добыча кам. угля.

ЗВЕРИ, то же, что млекопитающие. Иногда 3. наз. только хищных млекопитающих.



ЗВЕРИНЕЦ, коллекция диких животных, размещённых в клетках и предназначенных для показа посетителям. Первые 3. относятся ко времени ассирийских и вавилонских царей, егип. фараонов и древних перс. правителей. В Европе 3. были при древнеримских цирках; содержавшихся в них зверей использовали для травли. В кон. 18 и нач. 19 вв. в странах Европы и в России стали появляться передвижные 3. частных предпринимателей, к-рые показывали в чисто коммерческих целях в основном "диковины" животного мира, напр. слонов, львов, тигров, обезьян, медведей, крокодилов, павлинов, удавов, попугаев и др. Эти 3. носили характер увеселительных заведений. В СССР ликвидированы. 3. явились предшественниками зоологических парков.

ЗВЕРИНЫЙ СТИЛЬ, условное наименование широко распространённого в древнем иск-ве стиля, отличит. чертой к-рого было изображение отд. животных, частей их тела, а также сложных композиций из неск. животных. Возник у ряда народов в бронзовом веке, особое распространение получил в железном веке. Происхождение 3. с. связано с почитанием священного зверя (см. Тотемизм), изображение к-рого постепенно превратилось в условный орнаментальный мотив. Древнейшие образцы 3. с. известны в Египте и Месопотамии в 3-м тыс. до. н. э., в Передней Азии, Индии и Китае - во 2-м тыс. до н. э. На терр. СССР древнейшие образцы 3. с. известны в Закавказье и на Сев. Кавказе и относятся к 3-му тыс. до н. э. Во 2-м тыс. до н. э. 3. с. появляется в Поволжье, Приуралье, Ср. Азии и Юж. Сибири. В наиболее развитом виде 3. с. выступает в скифо-сарматском иск-ве Сев. Причерноморья и в иск-ве племён Юж. Сибири 1-го тыс. до н. э. и первых веков н. э. Скифский 3. с. сложился под влиянием иск-ва Ирана и Передней Азии, а в Причерноморье он испытал значи. влияние древнегреч. иск-ва.

Для него характерны тонкое наблюдение природы, реалистич. передача форм животных и их движений, динамич. композиции, изображающие борьбу зверей. Наиболее распространены изображения травоядных животных, хищных зверей и птиц, а также фантастич. существ (грифонов). Приёмы изображений различны: гравировка по металлу и литьё, резьба по дереву и кости, аппликации из кожи и войлока; известна татуировка человеческого тела, выполненная в 3. с. Реалистичность изображений сочеталась с определённой условностью: фигуры зверей располагались применительно к форме вещи, к-рую они украшали; животные изображались в канонических позах (скачущие, борющиеся; копытные с подогнутыми ногами; хищники - иногда свернувшимися в клубок). Прослеживаются условные приёмы и в передаче отд. частей тела животного (глаза в виде кружков, рога - завитков, пасть - полукруга и т. д.). Иногда изображалась часть тела зверя, служившая его символом (головы, лапы, когти зверей и птиц). Встречаются изображения зверей или их частей, помещённые на изображения др. животных. В сарматском 3. с. схематизация и условные черты заметно усилились, изображения часто покрывались многочисл. цветными вставками. В 1-м тыс. н. э. 3. с. постепенно утратил своё значение, особенно в связи с распространением христианского иск-ва на 3. и мусульманского на В. Однако изображения животных продолжали фигурировать в средневековом прикладном искусстве различных народов (в частности, Зап. и Вост. Европы). Так, напр., известны древнерусские ювелирные изделия, резьба по камню, заставки рукописных книг и т. д. с изображениями различных зверей, птиц и фантастич. существ (китоврас, птица-сирин и др.).

Лит.: Киселёв С. В., Древняя история Южной Сибири, [2 изд.], М., 1951; Руденко С. И., Культура населения Горного Алтая в скифское время, М.- Л., 1953; Артамонов М. И., К вопросу о происхождении скифского искусства, в кн.: Сообщения Государственного Эрмитажа, Л., 1962, в. 22; Rostoytzeff М., The animal style in South Russia and China, Princeton, 1929.



ЗВЕРОБОЙ (Hypericum), род растений сем. зверобойных. Многолетние, редко однолетние травы, полукустарники с супротивными цельными листьями.
[922-3.jpg]

Зверобой продырявленный; а - лист.



Цветки б. ч. в метельчатом или щитковидном соцветии; околоцветник 5-членный, лепестки жёлтые, тычинок много; плод - коробочка. Более 300 видов в умеренных и субтропич. областях, гл. обр. в Средиземноморье, а также в горах тропиков. В СССР св. 50 видов. Широко распространён 3. продырявленный (Н. рекforatum), с просвечивающими точечными желёзками на листьях. Из высушенных наземных частей 3. продырявленного готовят отвар и настойку (содержат дубильные вещества, эфирные масла), к-рые применяют внутрь как вяжущие и противовоспалит. средства при колитах, а также для смазывания дёсен и полоскания рта при гингивитах, стоматитах; применяют также наружно при ожогах, ранах, кожных заболеваниях. Из 3- продырявленного получен антибиотик-новоиманин. Листья 3. используются в производстве водки "зверобой" и др. Нек-рые виды 3. ядовиты для овец, лошадей и др. с.-х. животных. Мн. 3. разводят как декоративные.

Лит.: Атлас лекарственных растений СССР, М., 1962.



ЗВЕРОБОЙНОЕ СУДНО, судно для промысла ластоногих, гл. обр. тюленей. Обычно 3. с. бывают деревянные со стальной оковкой в носовой части, однопалубные, двухмачтовые, с рубкой в кормовой части. Корпус их должен быть особо прочным, способным выдерживать сжатие льдами, ему придаются соответствующие обводы. 3. с. строятся с усиленным набором корпуса судна и дополнит. ледовой обшивкой из дубовых досок поверх обычной сосновой. 3. с. в рыбной пром-сти СССР предоставлены деревянными шхунами, имеющими размеры: длина 40,5 м, ширина 9,5 м, водоизмещение 500 т, мощность гл. двигателя 220 квт (300 л. с.), скорость 14 км/ч (7,5 узла). Грузоподъёмность больших 3. с. 150- 160 т, малых- от 10 до 30 т. В грузовом трюме установлены вкладные металлич. цистерны для засолки тюленьих шкур и сала. Каждое 3. с. имеет 5-6 моторных ботов дл. ок. 6 м и водоизмещением ок. 5 т, с к-рых ведётся добыча зверя при работе в разрежённых льдах (см. Зверобойный промысел). И. С. Студенецкая.


ЗВЕРОБОЙНЫЕ (Hypericaceae), семейство двудольных растений. Деревья, кустарники, полукустарники и травы,иногда древесные лианы. Листья супротивные или мутовчатые, цельные, без прилистников. Цветки обоеполые, правильные, чашелистиков и лепестков по 4-5; тычинок много, сросшихся нитями б. ч. в 3-5 пучков. Завязь верхняя; плод коробочка или ягодообразный. Ок. 8 родов (360 видов), в тропич., субтропич. и умеренных областях обоих полушарий, преим. в умеренных областях Сев. полушария. В СССР 2 рода: трижелёзник (Triadenum) с 1 видом на Д. Востоке и зверобой (более 50 видов). 3. близки сем. клюзиевых, с к-рыми их часто объединяют.

Лит.: Тахтаджян А. Л., Система и филогения цветковых растений, М.- Л., 1966.



ЗВЕРОБОЙНЫЙ ПРОМЫСЕЛ, добыча тюленей, нерпы, морского котика и др. (Китобойный промысел обычно рассматривается как самостоят. вид промысла.) Продукция 3. п.- меховое и кожев. сырьё, тюлений жир, обладающий питательными и целебными свойствами, мясо, идущее на корм ездовым собакам и пушным зверям, а также внутр. органы (печень, эндокринные железы и др.), используемые для произ-ва витамина А и нек-рых др. фармацевтич. препаратов. 3. п.- древний вид промысла. Первоначально он был распространён в сев. части Тихого ок., где ещё в 1-м тыс. до н. э. сложились культуры приморских жителей, добывавших средства к существованию охотой на морских животных - моржей, китов, тюленей. Мясо и жир животных использовались в пищу, на отопление и освещение жилищ; шкуры шли на шитьё одежды, устройство жилищ, обтяжку остовов лодок; кости и черепа китов служили для строительства жилищ, клыки моржей - для изготовления различных орудий. Наиболее полного развития 3. п. достиг на С.-В. Азии у предков совр. эскимосов; отсюда он распространился в арктич. и субарктич. Сев. Америку и Гренландию. Он играл важную роль также в жизни народов Охотского побережья, островной части Д. Востока, Курильских о-вов, сев. Японии. В России 3. п. как ведущая отрасль х-ва был распространён у эскимосов, береговых чукчей и коряков, у командорских алеутов; как подсобная - у ненцев, саамов, охотских эвенов, ительменов и нек-рых народов Амура и Сахалина. Техника 3. п. была у этих народов крайне примитивна - употреблялись гарпуны с кам. и костяными наконечниками, байдары и каяки, обтянутые моржовыми шкурами. В летописи имеются указания, что ещё в 9 в. жители Кольского п-ова платили дань шкурами морского зверя. В России во льдах Белого м. 3. п. существовал с 16 в., позднее стал развиваться в северо-восточной части Баренцева м. На Шпицбергене рус. промышленники вели промысел морского зверя ещё задолго до открытия его В. Баренцем (1596). Издавна начался промысел каспийского тюленя. На Д. Востоке промысел вначале развивался по побережьям, лишь с 18 в. распространяется судовой 3. п. Хищнический промысел привёл к резкому сокращению запасов зверя одних видов и почти полному уничтожению других. Одним из первых декретов Сов. правительства был декрет об охране нац. богатств, поэтому были введены ограничения добычи (или её запрет) морского зверя, запасы которого стали ничтожны.

Осн. районами и объектами промысла тюленей в сев. Атлантике являются Белое и Баренцево моря (беломорское стадо гренландского тюленя), Гренландское море (ян-майенское стадо гренландского тюленя и хохлач), район Ньюфаундленда (ньюфаундлендское стадо гренландского тюленя). В первом районе осуществляют промысел СССР и Норвегия, во втором- Норвегия, в третьем - Канада и Норвегия. В 1965 судовой промысел гренландского тюленя в Белом м. был запрещён сроком на 5 лет, добыча белька (детёныша в возрасте 3-7 дней) разрешается лишь местному населению в размере ок. 25 тыс. голов в год при полном запрете выбоя взрослых самок на детных залёжках. В Гренландском м. введён запрет на добычу самок гренландского тюленя, т. к. запасы его снизились. В районе Ньюфаундленда Канадой и Норвегией введены меры охраны стада - запрет боя самок на детных залёжках и промысла - на линных. Гренландский тюлень и хохлач, обитающие в сев.-зап. Атлантике,- объекты, охраняемые в рамках Междунар. конвенции о рыболовстве в сев.-зап. части Атлантического океана 1949 (ИКНАФ). В этом же районе промышляют кольчатую нерпу, добычу к-рой, исходя из её запасов, можно увеличить.

Объекты промысла в сев. части Тихого ок.- акиба, лахтак, ларга, крылатка (из настоящих тюленей), сев. морской котик, сивуч (из ушастых тюленей). В связи с резким уменьшением численности моржа в сев. и дальневосточных водах промысел его запрещён с 1957, а для промысла местного населения введены строгие ограничения.

3. п. осуществляется обычно на Льдах в периоды скопления зверя для размножения - детные, или щенные залёжки, и линьки - линные залёжки (конец зимы н весна). Крупного зверя бьют из ружей с 80-50 м, молодняк убивают баграми.

С убитых зверей на льду снимают шкуры вместе с салом (хоровины). На 3. п. применяют моторные зверобойные суда, ледокольные пароходы. Для разведки скоплений используют самолёты (первая промысловая авиаразведка морского зверя была осуществлена в 1926).

В Каспийском м. промысел ведётся в сев.-вост. части на детных залёжках с начала февраля до середины марта; объект промысла - приплод (бельки). На промысел выходят на моторных судах; пользуясь указаниями авиаразведки, проходят по чистой воде между льдинами в район скопления зверя. Кроме того, промысел ведут и бригады тюленщиков, выезжающих на лёд на санях. Запасы каспийского тюленя невелики, поэтому, в целях регулирования промысла, запрещён убой самок в зимнее время, убой тюленей на воде, а также береговой промысел осенью. Промысел дальневосточных тюленей производится во льдах Охотского и Берингова морей в мае-июне со зверобойных судов. Как в Охотском, так и в Беринговом морях ледовая обстановка в определённые сезоны не позволяет вести промысел в ряде районов. В марте-апреле (период линьки) в Охотском море промышляют только в его южной части, в северной - лишь у кромки льда, в Беринговом море- у о-вов Прибылова и Св. Матвея. В мае-июне (период линьки) обстановка для 3. п. более благоприятная. Однако и в это время не все районы открываются для промысла.

Учёные многих стран ведут исследования тюленей в Юж. полушарии. Наблюдения за биологией и распространением тюленя-крабоеда, морского леопарда, тюленя Росса, тюленя Уэдделла, морского слона и южного морского котика позволили сделать вывод об их численности; однако плотность их скоплений в отд. районах неодинакова. Перспективными районами промысла могут быть: район о. Баллени, о. Петра I, Земли Грейама, моря Дюрвиля. По предварительным данным, возможная добыча тюленей этих видов ок. 500 тыс. голов в год (1970).

Промысел морского котика осуществляется на лежбищах. В сев. части Тихого ок. известны лежбища на о-вах Прибылова (США), Командорских о-вах- о. Медный, о. Беринга (СССР), о. Тюлений (СССР, у вост. побережья Сахалина). Хищнический промысел сев. морских котиков в кон. 19-нач. 20 вв. привёл почти к полному уничтожению котиков в сев. части Тихого ок. Восстановление запасов этих ценных животных началось после подписания в 1911 Междунар. конвенции по сохранению котиков. В 1957 между СССР, США, Канадой и Японией была подписана временная Конвенция о сохранении котиков в сев. части Тихого ок. Она предусматривает регламентирование добычи и проведение странами-участницами координированных исследований для разработки мероприятий, обеспечивающих максимально допустимую устойчивую добычу котиков. Благодаря этому поголовье котиков в сев. части Тихого ок. значительно увеличилось.

Лит.: Исследования морских млекопитающих, [Сб. ст.], Мурманск, 1967; Ластоногие северной части Тихого океана, [Сб. cт.J, M., 1968; Морские млекопитающие, М., 1969. И. С. Студенецкая.



ЗВЕРОВОДСТВО, отрасль животноводства по разведению в неволе ценных пушных зверей для получения шкурок. Объекты 3.- норка, голубой песец, серебристо-чёрная лисица, нутрия, соболь (разводится только в СССР); осваивается разведение речного бобра (с 1939, Воронежский заповедник) и шиншиллы (с 1962, Опытно-показат. х-во Центросоюза, г. Киров). Осн. форма 3.- клеточная. Продукция клеточного 3. в СССР (пушно-меховое сырьё) идёт на экспорт и используется для выработки различных меховых изделий на внутр. рынок. Осн. часть продукции 3. составляют шкурки норки разнообразных натуральных расцветок. В 1970 в денежном обороте междунар. пушно-меховой торговли на шкурки клеточной норки приходилось 70%.

В России клеточное пушное 3. возникло в 16-17 вв., когда население Севера занималось выращиванием на шкурку выловленного с воли молодняка лисиц и песцов при доме, в деревянных срубах. Развития клеточное 3. в России не получило, т. к. себестоимость шкурки зверя, выращенного на ферме, была выше стоимости шкурок, добытых охотой. К 1917 в России было 23 мелкие частновладельческие любительские зверофермы с небольшим количеством малоценных в хоз. отношении зверей (красная лисица, белый песец и др.). В СССР как отрасль животноводства 3. начало развиваться в 1928-29, когда были созданы первые специализированные звероводческие совхозы для производства пушнины на экспорт (Ширшинский Архангельской обл., Пушкинский и Салтыковский Моск. обл., Тобольский Тюменской обл. и др.). К 1932 в СССР было 20 зверосовхозов. С 1934 3. стало развиваться и в колхозах. Во время Великой Отечественной войны 1941-45 клеточное 3. сильно пострадало и в послевоен. годы организовано заново.

За период 1945-70 в СССР создано пром. клеточное 3. Осн. производителями пушнины в стране стали крупные специализированные зверосовхозы, имеющие большие зверофермы (до 100 тыс. зверей), оснащённые механизированными помещениями для зверей, кормокухнями и машинными холодильниками для хранения кормов, обеспеченные квалифицированными кадрами рабочих и специалистов-звероводов. За этот же период в СССР возникло 118 крупных зверосовхозов (против 22 в 1945) и более 200 кооперативных звероферм. Производство шкурок клеточных пушных зверей за это время возросло в 240 раз (с 26 тыс. до 6,3 млн. шт.). Наибольшее количество клеточной пушнины поставляет РСФСР, где в 1970 получено 4,8 млн. шкурок, что составило 77% общесоюзного производства клеточной пушнины.



Производство шкурок клеточныхпушных зверей в СССР в 1970, тыс. шт.
Категории хозяйств

Произведено шкурок

Всего шкурок

Сумма от реализации шкурок, млн. руб.

Удельный вес,

%
норки

песца

лисицы

нутрии

соболя
Совхозы

3726,0

206,1

142,9

45,0

7,3

4127,3

196,9

64,1
Кооперативные зверофермы

1330,7

428,0

221,0

66,0

_

2045,7

99,2

32,3
Колхозы

49,2

57,5

48,7

14,6

-

170,0

9,9

3,2
Госзверопромхозы

17,9

2,2

4,2

0,6

-

24,9

1,4

0,4
Итого

5123,8

693,8

416,8

126,2

7,3

6367,9

307,4

100,0

Совр. специализированные зверосовхозы представляют собой высокорентабельные механизированные животноводческие х-ва, работающие на хозрасчёте и снабжающие племенными зверями кооперативные, колхозные и совхозные зверофермы. Размеры зверосовхозов определяются величиной осн. стада самок зверей (в тыс. гол.): св. 15 - особо крупные, от 10 до 15 - крупные, от 5 до 10- средние, до 5 - мелкие. Лучшие зверосовхозы страны (Салтыковский и Пушкинский Московской обл., Кольский Мурманской обл., Лесной Алтайского края, Багратионовский Калининградской обл., Соловьёвский Сахалинской обл., "Мадона" Латв. ССР и др.) имеют по 10-15 тыс. самок осн. стада зверей и ежегодно продают государству по 50- 60 тыс. шкурок на 2-3 млн. руб. каждый, при уровне рентабельности х-в до 50%. До 85-90% общего количества осн. самок в крупных х-вах составляет обычно норка. Звери содержатся в шедах-навесах, в к-рых размещаются в 2 ряда с центр. проходом надземные клетки из оцинкованной металлич. сетки, с сетчатым полом и с навесными или вставными домиками для укрытия и щенения зверей. Шедовая система содержания позволила ликвидировать глистные заболевания зверей и механизировать обслуживание. Нутрии содержатся в наземных бетонированных блокированных клетках с бассейнами для купания.

Лисица, песец, норка и соболь принадлежат к плотоядным животным (хищникам), питающимся преим. мясными и рыбными кормами; нутрия питается растительными кормами. В периоды размножения лисицам, песцам, норкам и соболям скармливают наиболее полноценные корма - свежее мясо (конское, тюленье, китовое, моржовое и др.), печень и субпродукты (рубец, лёгкое, селезёнка, головы, кровь) с.-х. животных, рыбу, молоко, творог, свежедроблёную кость, рыбий жир, дрожжи. Из растительных кормов дают зерно злаков, картофель, корнеплоды, овощи. Для беременных, лактирующих самок и молодняка в возрасте до 3 мес. особенно важно кормление мускульным мясом, цельной рыбой, сырой печенью, минеральными (свежедроблёная кость) и витаминными (рыбий жир, зелень) кормами. В остальные периоды для кормления зверей широко используют кормовую рыбу, мясные и рыбные отходы, куколку тутового шелкопряда, обезжиренный творог, боеискую кровь и др. При составлении кормовых рационов руководствуются нормами (по калорийности) для зверей различного возраста, массы, физиологич. состояния (покой, беременность, лактация) в различные периоды года. В рационе норок в зимне-весенний период мясорыбные корма составляют по калорийности 65-75% , молоко - 5% , зерновые - 10-20% , овощи - 3% , дрожжи - 4% , рыбий жир - 3% . В рационы лисицы, песца включают неск. меньше мясо-рыбных кормов и больше зерна. Состав рационов для зверей по зонам и районам страны различается гл. обр. соотношением рыбы и мясных субпродуктов в группе животных кормов. В звероводческих х-вах Юж. Сахалина, Камчатки, Приморского края, Мурманской, Архангельской обл., прибалтийских республик в рационах норок и песцов преобладает рыба. В р-нах Сибири и Европ. части СССР рыба составляет 50% животных кормов в рационах этих зверей; на Украине и в Белоруссии - 30% . Перед скармливанием мясо-рыбные корма вместе с костями измельчают па роторных измельчителях и мясорубках, замешивают с мукой зерновых, овощами, рыбьим жиром и витаминными добавками (витамин Е, B1) в фаршемешалках и выдают на зверофермы в виде тестообразной массы.

При каждой звероферме имеется механизированная кормокухня, оборудованная кормоперерабатывающими агрегатами или набором машин для поточной переработки кормов (мясорубка, костедробилка, фаршемешалка, паровые варочные котлы и т. п.). Кормокухня крупных зверосовхозов обеспечивает переработку в течение дня 20-30 т различных кормов. При полной механизации корм раздают электрокаром с дозатором, при частичной - с помощью тележек или подвесных дорог облегчённого типа. Для хранения запасов мясо-рыбных кормов на фермах имеются машинные холодильники. Поилки, как правило, автоматические (реже водоподача шланговая). В комплекс производственных построек зверосовхоза входят также пункт первичной обработки шкурок (до экспортных кондиций) и ветеринарный пункт с изолятором. Звероводческие хозяйства имеют авторефрижераторный транспорт для перевозки мясо-рыбных кормов с мясокомбинатов, со станций железных дорог и т. п.

Осн. форма организации труда на зверофермах - бригада, обслуживающая закреплённое за ней поголовье зверей. Нормы нагрузки в среднем на одного рабочего: взрослых самок с приплодом: норок 250, лисиц 80, песцов 60, соболей 75 (с молодняком прошлых лет), нутрий 150. Производств. цикл работ, принятый на зверофермах, соответствует особенностям биологии зверей: 1) подготовка зверей к гону; 2) гон; 3) беременность; 4) лактация; 5) выращивание молодняка; 6) комплектование осн. стада; 7) забой зверей на шкурку. Подготовка к гону племенных самок и самцов начинается после отсадки молодняка. Правильно подготовленные к гону животные имеют живую массу - лисицы: самки 5-5,5 кг, самцы 6-6,5 кг; норки: самки 900-1000 г, самцы 1800-2000 г; соболь: самки 1100-1200 г, самцы 1500- 1700 г. Нутрии могут давать приплод в течение всего года и совмещать беременность с выкармливанием молодняка, поэтому период подготовки к гону у них отсутствует. Гон пушных зверей (кроме нутрий) наблюдается в течение года один раз. Ср. нагрузка на самца в период гона - 3-5 самок.

Время щенения у лисиц, песцов, норок, соболей - март, апрель, май, у нутрий - весь год. С 4-недедьного возраста щенят начинают подкармливать (щенят нутрий- с 10-дневного возраста). В зависимости от молочности самок, величины приплода, равномерности его развития щенят отсаживают от самок в 40-50-дневном возрасте и помещают разнополыми парами в небольшие сетчатые клетки. Для клеточных пушных зверей обязательно естеств. освещение, являющееся рефлекторным регулятором (через гипоталамус) их природных биол. ритмов (нормального размножения, смены и развития волосяного покрова по сезонам года и др.). В августе молодняк клеймят и разделяют на "забойных" и племенных зверей. В сентябре, октябре и ноябре у зверей отрастает зимний мех, в ноябре и декабре проводятся бонитировка производственного стада и забой зверей для получения шкурок.

Племенная работа в 3. ведётся путём отбора и подбора пушных зверей крупного размера, плодовитых, жизнеспособных, с ценными пушно-меховыми качествами. Использование генетич. приёмов племенной работы обеспечило получение многочисл. цветных форм зверей: 34 типа цветных норок, неск. цветных типов лисиц и голубых песцов. Достижением сов. 3. является создание ферм крупных чёрных соболей, мех к-рых имеет красивую голубую подпушь. Передовые зверосовхозы добиваются 100%-ного покрытия самок во время гона, 90% благополучных щенений, 97-98% сохранения молодняка при выращивании. Сроки хоз. использования лисицы и песца 9-10 лет, норки 5-6 лет, соболя 12-14 лет, нутрий 3-4 года.

Валовая стоимость клеточной пушнины, произведённой в СССР в 1970, составила 307,4 млн. руб., или 85% общих заготовок пушнины в стране. Развитие пром. 3. в стране позволило увеличить экспорт клеточной пушнины за последние 5 лет в 6 раз и получить от её продажи на внешнем рынке десятки млн. руб. По производству шкурок клеточных зверей СССР в 1970 занял 1-е место в мире.

Развитие 3. в СССР идёт по пути создания всё более крупных узкоспециализированных звероводческих х-в на пром. основе - настоящих фабрик пушнины. Крупные пром. зверохозяйства работают исключительно на покупных мясо-рыбных кормах и размещены в наиболее экономически развитых р-нах (РСФСР, УССР, БССР, Прибалтика, Приморский край, Сахалин и др.), с хорошими путями сообщения, наличием предприятий мясомолочной и рыбной промышленности, полной обеспеченностью высоковольтной энергией для снабжения кормоприготовительных агрегатов и холодильников больших мощностей. Небольшие зверофермы имеются лишь на Крайнем Севере (Якутская АССР, Тюменская обл.) в рыболовецких колхозах и кооперативно-промысловых охотничьих хозяйствах, использующих для кормления зверей малоценную рыбу своего улова, отходы от забоя сев. оленей, тушки ондатры и др. охотничье-промысловых животных.

В СССР развёрнута подготовка кадров зоотехников-звероводов с высшим и средним образованием. 3. как науч. дисциплина преподаётся на зоотехнич. ф-тах высших и средних с.-х. учебных заведений. Науч. исследования в области 3. возглавляют Н.-и. ин-т пушного звероводства и кролиководства (Моск. обл., ст. Удельная) и Всесоюзный н.-и. ин-т охотничьего хозяйства и звероводства (г. Киров). В стране издаётся большое количество учебной и монографич. лит-ры по 3. Министерство с. х-ва СССР издаёт раз в 2 мес. массово-производственный журнал "Кролиководство и звероводство" (с 1910).

3. за рубежом возникло в кон. 19 в. в Канаде, где Ч. Долтон на о. Принс-Эдуард, в заливе Св. Лаврентия, начал пром. клеточное разведение отловленных диких серебристо-чёрных лисиц.

В дальнейшем клеточное 3. распространилось в США и скандинавских странах. Эти страны производят в основном клеточную норку. В 1970 произ-во шкурок норки в капиталистич. странах составило более 17 млн. шт.; гл. производители норковых шкурок (в млн. шт.): США 4,5; Дания 3,3; Швеция 1,8; Норвегия 2,1; Финляндия 2,1; Канада 1,6. Небольшое количество песцовых шкурок производят норвежские зверофермы. В социа-листич. странах, кроме СССР, 3. получило значит. развитие в Польше и ГДР. В Польше в 1970 было произведено более 1 млн. шкурок норки, голубого песца и нутрии, в ГДР - 320 тыс.

Лит.: Звероводство. 3 изд., М., 1959; Ильина Е. Д., Звероводство, М., 1963; Ильина Е. Д., Кузнецов Г. А., Генетические основы разведения цветных норок, М., 1965: Афанасьев В. А., Перельдик Н. Т., Клеточное путное звероводство, М., 1966. В. А. Афанасьев.

ЗВЕРОВОДЧЕСКАЯ ФЕРМА, ферма звероводческого х-ва, занимающаяся разведением в клетках пушных зверей: норки, песца, лисицы, соболя, нутрии; см. Ферма животноводческая.

ЗВЕРОЗУБЫЕ (Theriodontia), териодонты, подотряд вымерших пресмыкающихся подкласса зверообразных. Существовали с поздней перми до средней юры; предки млекопитающих. С ними 3. сближает ряд признаков: чётко дифференцированные зубы (резцы, клыки и коренные), вторичное нёбо, несколько укороченная лицевая часть черепа, исчезновение заглазничной височной дуги и задних костей нижней челюсти, появление двураздельного затылочного мыщелка, утрата теменного отверстия, дифференциация поясничного отдела позвоночника, более совершенная (вертикальная) ориентировка конечностей. Наиболее прогрессивная группа 3.- иктидозавры, возможно, непосредств. предки млекопитающих или очень близки к таковым. К 3. относятся также надсемейства: горгонопсы (иностранцевия), цинодонты (двиния, циногнат), тритилодонты, тероцефал и бауриаморфы. Остатки 3. наиболее многочисленны в Юж. Африке и Европ. части СССР.

Лит.: Вьюшков Б. П., Тероцефалы Советского Союза, "Тр. Палеонтологического ин-та АН СССР", 1955, т. 49; Основы палеонтологии, т. 12- Земноводные, пресмыкающиеся и птицы, М., 1964.

А. К. Рождественский.



ЗВЕРООБРАЗНЫЕ (Theromorpha, Synapsida), тероморфы, синапсиды, подкласс вымерших пресмыкающихся. 3. существовали в позднем карбоне - средней юре. Наиболее распространённые и самые высокоорганизованные наземные позвоночные конца палеозоя. Большинство 3. были хищниками, но имелись и растительноядные формы. Высшие 3., возможно, были уже теплокровными. Многочисл. остатки 3. известны на всех материках, кроме Австралии. В СССР - в сев. половине Европ. части (Сев. Двина, ср. Волга, Приуралье). 3. включают 2 отряда - пеликозавров и терапсид, насчитывающих ок. 60 сем. Имеют большое значение для выяснения эволюции высших позвоночных.

Лит.: Ефремов И. А., фауна наземных позвоночных в пермских медистых песчаниках Западного Приуралья. "Тр. Палеонтологического ин-та АН СССР", 1954, т. 54; Орлов Ю. А., Хищные дейноцефалы фауны Ишеева, там же, 1958, т. 72; Основы палеонтологии, т. 12 - Земноводные, пресмыкающиеся и птицы, М., 1964.

А. К. Рождественский.



ЗВОЛЕН (Zvolen), город в Чехословакии, в Словацкой Социалистич. Республике, на р. Грон. 25,4 тыс. жит. (1970). Ж.-д. узел. Деревообр., машиностроит. пром-сть. Лесотехнич. ин-т.



ЗВОЛЛЕ (Zwolle), город в Нидерландах. Адм. ц. провинции Овсрэйсел. 76 тыс. жит. (1970). Узел водных, шоссейных и ж.-д. путей. Металлообработка (общее машиностроение, электротехника, произ-во грузовых автомобилей). ГЭС на р. Эйсел. Высшая техиич. школа: театр, музей.

ЗВОНАРЬ, птица-колокольчик (Procnias alba), птица сем. котинг отряда воробьиных. Дл. тела ок. 25 см.
[922-4.jpg]

Звонарь: а - во время крика: б - в спокойном состоянии.



Самец белый, самка зеленоватая. Самец у основания клюва имеет полый чёрный мускулистый вырост. Когда самец издаёт мелодичный крик, напоминающий звон, вырост, возможно, играющий роль резонатора, заметно удлиняется. Распространён, 3. в горных лесах Гвианы.

ЗВОНЕЦ (Rhinanthus), род растений сем. норичниковых, более известный как погремок.



ЗВОНКИЕ СОГЛАСНЫЕ, согласные, произносимые с участием голоса, т. е. при сближенных и напряжённых голосовых связках, напр. рус. "б", "в", "г", "з" и т. п. 3. с. по признаку наличия голоса противопоставляются глухим согласным, с к-рыми образуют пары: "п" - "б", "ф" - "в", "к" - "г" и т. д. См. Согласные.

ЗBOHKОB Василий Васильевич [25.12. 1890 (6.1.1891), Боровичи, ныне Новгородской обл., - 13.11.1965, Москва], советский учёный в области транспорта, чл.-корр. АН СССР (1939). Чл. КПСС с 1951. В 1917 окончил Моск. ин-т инженеров путей сообщения. С 1923 по 1932 преподавал в Моск. ин-те инженеров путей сообщения и Ленингр. ин-те инженеров водного транспорта; в 1932-50 проф. Военно-транспортной академии. В 1950-55 пред, секции по науч. разработке проблем транспорта АН СССР. С 1955 по 1965 зам. директора Ин-та комплексных трансп. проблем АН СССР. Труды 3. по расчёту и рациональному использованию тяговых средств водного транспорта послужили основанием для внедрения новой системы паспортизации и методов испытания судов. Большое значение имеют исследования по комплексным трансп. проблемам. Награждён орденом Ленина, 4 др. орденами, а также медалями.

Соч.: Организация судоходного предприятия. Расчёты, М.. 1929; Комплексная типизация технических средств внутреннего водного транспорта. М., 1948.

Лит.: Василий Васильевич Звонков, М., 1957. (Материалы к биобиблиографии учёных СССР). Серия технических наук. Транспорт, в. 4.



ЗВОННИЦА, надстроенное на стене храма или отдельно стоящее сооружение с одним или неск. проёмами для подвешивания колоколов. 3., единообразные или вытянутые в плане прямоугольныес внутр. пространством, получили выразит. пластич. разработку в кам. др.-рус. (особенно псковских) храмах 14- 17 вв., внеся элемент живописности в их композицию.



ЗВОНОК ЭЛЕКТРИЧЕСКИЙ, состоит из электромагнита, якоря с бойком и чашечки (колокола). При нажатии на кнопку 3. э. постоянного тока (рис.) замыкается цепь питания электромагнита Э, якорь Я притягивается и своим бойком бьёт по чашечке звонка. Притягиваясь, якорь размыкает контакты прерывателя К в цепи питания электромагнита и под действием пружины Л возвращается в исходное положение. Осн. недостаток - искрение контактов, создающее большие радиопомехи. При питании от сети переменного тока 127- 220 о 3. э. включают через трансформатор, встроенный в корпус звонка, чтобы напряжение на кнопке не превышало 12 в (по требованиям техники безопасности). 3. э. переменного тока, работающие по принципу поляризованного реле, не имеют контактов и используют изменение направления магнитного потока для перемещения бойка.
[922-5.jpg]

Схема электрического звонка постоянного тока: Э - электромагнит; Я - якорь: К - прерыватель; П - пружина.

Существуют также 3. э. резонансные поляризованные, применяемые в избират. системах (напр., в телефонных аппаратах).


ЗВОНЦЫ, семейство двукрылых насекомых; то же, что комары-дергуны.

ЗВОРЫКИН (Zworykin) Владимир Кузьмин (р.30.7.1889, Муром, ныне Владимирской обл.), американский инженер и изобретатель в области электроники, известен как основоположник телевидения. По национальности русский. В 1912 окончил Петерб. технологич. ин-т, в 1914- Коллеж де Франс в Париже. В 1917 эмигрировал из России. В 1919 приехал в США и в 1920 поступил па работу и фирму "Вестингауз электрик" в Питсбурге. В 1926 получил степень доктора философии в Питсбургском ун-те, в 1938- степень доктора наук в Бруклинском политехнич. ин-те. С 1929 работает в Американской радиокорпорации, возглавляя лаборатории электроники в Камдене и Принстоне. В 1931 3. создал первый иконоскоп - передающую трубку, края сделала возможным развитие электронных телевизионных систем. 3. известен своими работами по созданию фотоэлементов, электронных умножителей, микроскопов, а также электронных систем управления трансп. средствами. С 1954 по 1962 директор центра медицинской электропики. С 1954 почётный вице-президент Американской радиокорпорации. Чл. Амер. академии искусств и наук, Нац. академии техники и мн. др. академии и науч. обществ.

Соч.: Television in science and industry, N. Y., 1938 (соавтор); в рус. пер.- Телевидение. Вопросы электроники в передаче цветного и монохромного изображений, М., 1936 (совм. с; Дж. А. Мартоном).

ЗВОРЫКИН Константин Алексеевич [25.3 (6.4). 1861, Муром, пыне Владимирской обл.,- 7.7.1928, Киев], советский учёный в области технологии металлов. В 1884 окончил Петерб. технологич. ин-т. С 1888 преподавал в Харьковском технологич. ин-те, в 1898-1905 и 1918-26 проф. Киевского политехнич. нн-та. В 1893 опубликовал классич. труд о работе и усилиях в процессе резания металлов. Теоретически определил положение плоскости скалывания, открытой И. А. Тиме. Сконструировал самопишущий гидравлический динамометр для определения сил резания. Известны труды 3. и в др. областях науки и техники; в 1894 он опубликовал "Курс по мукомольному производству".

Лит.: Русские учёные - основоположники науки о резании металлов, под ред. К. П. Панченко, М., 1952.



ЗВУК, в широком смысле - колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твёрдой средах (см. также Упругие волны); в узком смысле - явление, субъективно воспринимаемое специальным органом чувств человека и животных. Человек слышит 3. с частотой от 16 гц до 20 000 гц. Физич. понятие о 3. охватывает как слышимые, так и неслышимые звуки. 3. с частотой ниже 16 гц наз. инфразвуком, выше 20 000 гц - ультразвуком; самые высокочастотные упругие волны в диапазоне от 109 до 1012-1013 гц относят к гиперзвуку. Область инфразвуковых частот снизу практически не ограничена - в природе встречаются инфразвуковые колебания с частотой в десятые и сотые доли гц. Частотный диапазон гиперзвуковых волн сверху ограничивается физич. факторами, характеризующими атомное и молекулярное строение среды: длина упругой волны должна быть значительно больше длины свободного пробега молекул в газах и больше межатомных расстояний в жидкостях и в твёрдых телах. Поэтому в воздухе не может распространяться гиперзвук с частотой 109 гц и выше, а в твёрдых телах - с частотой более 1012-1013 гц.

Основные характеристики звука. Важной характеристикой 3. является его спектр, получаемый в результате разложения 3. на простые гар-монич. колебания (т. н. частотный звука анализ). Спектр бывает сплошной, когда энергия звуковых колебаний непрерывно распределена в более или менее широкой области частот, и линейчатый, когда имеется совокупность дискретных (прерывных) частотных составляющих. 3. со сплошным спектром воспринимается как шум, напр. шелест деревьев под ветром, звуки работающих механизмов. Линейчатым спектром с кратными частотами обладают муз. 3. (рис. 1); осн. частота определяет при этом воспринимаемую на слух высоту звука, а набор гармонич. составляющих - тембр звука.


[922-6.jpg]

Рис. 1 (слева). Частотно-амплитудные спектры звуков музыкальных инструментов: а - скрипки (звук ля первой октавы, основная частота 426 гц); б - скрипки (звук мн второй октавы, основная частота 640 гц); в - деревянной флейты (звук ми второй октавы, основная частота 106 гц); г - тромбона (звук ми бемоль первой октавы, основная частота 306 гц). Рис. 2 (справа). Частотно-амплитудные спектры гласных "о", "а", "и".

В спектре 3. речи имеются форманты - устойчивые группы частотных составляющих, соответствующие определённым фонетич. элементам (рис. 2). Энергетич. характеристикой звуковых колебаний является интенсивность звука - энергия, переносимая звуковой волной через единицу поверхности, перпендикулярную направлению распространения волны, в единицу времени. Интенсивность 3. зависит от амплитуды звукового давления, а также от свойств самой среды и от формы волны. Субъективной характеристикой 3., связанной с его интенсивностью, является громкость звука, зависящая от частоты. Наибольшей чувствительностью человеческое ухо обладает в области частот 1-5 кгц. В этой области порог слышимости, т. е. интенсивность самых слабых слышимых звуков, по порядку величины равна 10-12 вт/м2, а соответствующее звуковое давление-10-5 н/м2. Верхняя по интенсивности граница области воспринимаемых человеческим ухом 3. характеризуется порогом болевого ощущения, слабо зависящим от частоты в слышимом диапазоне и равным примерно 1 вт/м2. В ультразвуковой технике достигаются значительно большие интенсивности (до 104 квт/м2).

Источники звука - любые явления, вызывающие местное изменение давления или механич. напряжение. Широко распространены источники 3. в виде колеблющихся твёрдых тел (напр., диффузоры громкоговорителей и мембраны телефонов, струны и деки музыкальных инструментов; в ультразвуковом диапазоне частот - пластинки и стержни из пьезоэлектрических материалов или магнитострикционных материалов). Источниками 3. могут служить и колебания ограниченных объёмов самой среды (напр., в органных трубах, духовых музыкальных инструментах, свистках и т. п.). Сложной колебат. системой является голосовой аппарат человека и животных.

Возбуждение колебаний источников 3. может производиться ударом или щипком (колокола, струны); в них может поддерживаться режим автоколебаний за счёт, напр., потока воздуха (духовые инструменты). Обширный класс источников 3. - электроакустические преобразователи, в к-рых механич. колебания создаются путём преобразования колебаний электрич. тока той же частоты. В природе 3. возбуждается при обтекании твёрдых тел потоком воздуха за счёт образования и отрыва вихрей, напр. при обдувании ветром проводов, труб, гребней морских волн. 3. низких и инфранизких частот возникает при взрывах, обвалах. Многообразны источники акустических шумов, к к-рым относятся применяемые в технике машины и механизмы, газовые и водяные струи. Исследованию источников промышленных, транспортных шумов и шумов аэродинамич. происхождения уделяется большое внимание ввиду их вредного действия на человеческий организм и технич. оборудование.

Приёмники звука служат для восприятия звуковой энергии и преобразования её в др. формы. К приёмникам 3. относится, в частности, слуховой аппарат человека и животных. В технике для приёма 3. применяются гл. обр. электроакустич. преобразователи: в воздухе - микрофоны, в воде - гидрофоны и в земной коре - геофоны. Наряду с такими преобразователями, воспроизводящими временную зависимость звукового сигнала, существуют приёмники, измеряющие усреднённые по времени характеристики звуковой волны, напр. диск Рэлея, радиометр.

Распространение звуковых волн характеризуется в первую очередь скоростью звука. В газообразных и жидких средах распространяются продольные волны (направление колебат. движения частиц совпадает с направлением распространения волны), скорость к-рых определяется сжимаемостью среды и её плотностью. Скорость 3. в сухом воздухе при темп-ре О °С составляет 330 м/сек, в пресной воде при 17 °С- 1430 м/сек. В твёрдых телах, кроме продольных, могут распространяться поперечные волны, с направлением колебаний, перпендикулярным распространению волны, а также поверхностные волны (Рэлея волны). Для большинства металлов скорость продольных волн лежит в пределах от 4000 м/сек до 7000 м/сек, а поперечных-от 2000 м/сек до 3500 м/сек.

При распространении волн большой амплитуды (см. Нелинейная акустика) фаза сжатия распространяется с большей скоростью, чем фаза разрежения, благодаря чему синусоидальная форма волны постепенно искажается и звуковая волна превращается в ударную волну. В ряде случаев наблюдается дисперсия звука, т. е. зависимость скорости распространения от частоты. Дисперсия 3. приводит к изменению формы сложных акустич. сигналов, включающих ряд гармонич. составляющих, в частности - к искажению звуковых импульсов. При распространении звуковых волн имеют место обычные для всех типов волн явления интерференции и дифракции. В случае, когда размер препятствий и неоднородностей в среде велик по сравнению с длиной волны, распространение звука подчиняется обычным законам отражения и преломления волн и может рассматриваться с позиций геометрической акустики.

При распространении звуковой волны в заданном направлении происходит постепенное её затухание, т. е. уменьшение интенсивности и амплитуды. Знание законов затухания практически важно для определения предельной дальности распространения звукового сигнала. Затухание обусловливается рядом факторов, к-рые проявляются в той или иной степени в зависимости от характеристик самого звука (и в первую очередь, его частоты) и от свойств среды. Все эти факторы можно подразделить на две большие группы. В первую входят факторы, связанные с законами волнового распространения в среде. Так, при распространении в неограниченной среде 3. от источника конечных размеров интенсивность его убывает обратно пропорционально квадрату расстояния. Неоднородность свойств среды вызывает рассеяние звуковой волны по различным направлениям, приводящее к ослаблению её в первоначальном направлении, напр. рассеяние 3. на пузырьках в воде, на взволнованной поверхности моря, в турбулентной атмосфере (см. Турбулентность), рассеяние высокочастотного ультразвука в поликристаллич. металлах, на дислокациях в кристаллах. На распространение 3. в атмосфере и в море влияет распределение темп-ры и давления, силы и скорости ветра. Эти факторы вызывают искривление звуковых лучей, т. е. рефракцию 3., к-рая объясняет, в частности, тот факт, что по ветру 3. слышен дальше, чем против ветра. Распределение скорости 3. с глубиной в океане объясняет наличие т. н. подводного звукового канала, в к-ром наблюдается сверхдальнее распространение 3., напр. 3. взрыва распространяется в таком канале на расстояние более 5000 км.

Вторая группа факторов, определяющих затухание 3., связана с физич. процессами в веществе - необратимым переходом звуковой энергии в др. формы (гл. обр. в тепло), т. е. с поглощением звука, обусловленным вязкостью и теплопроводностью среды ("классическое поглощение"), а также переходом звуковой энергии в энергию внутримолекулярных процессов (молекулярное или релаксационное поглощение). Поглощение 3. заметно возрастает с частотой. Поэтому высокочастотный ультразвук и гиперзвук распространяются, как правило, лишь на очень малые расстояния, часто всего на несколько см. В атмосфере, в водной среде и в земной коре дальше всего распространяются инфразвуковые волны, отличающиеся малым поглощением и слабо рассеиваемые. На высоких ультразвуковых и гиперзвуковых частотах в твёрдом теле возникает дополнит. поглощение, обусловленное взаимодействием волны с тепловыми колебаниями кристаллической решётки, с электронами и со световыми волнами. Это взаимодействие при определённых условиях может вызвать и "отрицательное поглощение", т. е. усиление звуковой волны.

Значение звуковых волн, а следовательно, и их изучение, к-рым занимается акустики, чрезвычайно велико. С давних пор 3. служит средством связи и сигнализации. Изучение всех его характеристик позволяет разработать более совершенные системы передачи информации, повысить дальность систем сигнализации, создать более совершенные муз. инструменты. Звуковые волны являются практически единств. видом сигналов, распространяющихся в водной среде, где они служат для целей подводной связи, навигации, локации (см. Гидроакустики). Низкочастотный звук является инструментом исследования земной коры. Практич. применение ультразвука создало целую отрасль совр. техники - ультразвуковую технику. Ультразвук используется как для контрольно-измерительных целен (в частности, в дефектоскопии), так и для активного воздействия на вещество (ультразвуковая очистка, механич. обработка, сварка и т. п.). Высокочастотные звуковые волны и особенно гиперзвук служат важнейшим средством исследований в физике твердого тела.

Лит.: Стретт Дж. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1 - 2, М.. 1955); Красильников В. А., Звуковые и ультразвуковые волны в воздухе, воде и твёрдых телах, 3 изд., М., I960; Розенберг Л. Д., Рассказ о неслышимом звуке. М.. 1961. И.П. Голямина.

ЗВУК МУЗЫКАЛЬНЫЙ, может иметь высоту осн. тона от до субконтроктавы до до - ре пятой октавы (от 16 до 4000- 4500 гц). Громкость его не может превышать порога болевого ощущения. По длительности и по тембру 3. м. очень разнообразны. 3. м. организуются в муз. систему. Так, в каждой октаве обычно используются лишь 12 звуков, отстоящих па полутон друг от друга (см. Строй). Динамич. оттенки подчинены шкале громкостей (пианиссимо, пиано, меццопиано, меццофорте, форте, фортиссимо н т. п.), не имеющей абсолютных значений (см. Динамики в музыке). В наиболее употребит. шкале длительностей соседние звуки находятся в отношении 1:2 (восьмые так относятся к четвертям, как четверти к половинам, и т. п., см. Ритмическое деление). Тембр звука, определяющийся гя. обр. присутствием в нём обертонов, зависит от его источника (голос, тот или иной Инструмент и т. п.). В музыке применяются многообразные тембры и их сочетания (см. Инструментовки).

Лит.: Музыкальная акустика. 2 изд., М., 1954; Мутли Л. Ф.. Звук н слух, в сб.: Вопросы музыкознания, т. 3, М., 1960; Stumрf К.. Tonpsvchologie, Bel 1 - 2, Lpz., 1883-90; Handsсhin J , Der Toncbarakter. Z., [1948]. Ю. Н. Рогс.

ЗВУКА АНАЛИЗ, разложение сложного звукового процесса на ряд простых колебаний. Применяются 2 вида 3. а.: частотный и временной.

При частотном 3. а. звуковой сигнал представляется суммой гармонич. составляющих (см. Гармонические колебания), характеризующихся частотой, фазой и амплитудой. Частотный 3. а. позволяет получить распределение амплитуд составляющих по частотам (рис.)-т. п. частотно-амплитудные спектры н реже- распределение фаз составляющих по частотам (фазо-частотные спектры). Зная спектр шума, напр. автомобиля, т. е. зная частоты и амплитуды его гармоник, можно рассчитать конструкцию глушителя. Знание спектров речевых и муз. сигналов позволяет правильно рассчитать частотную характеристику передающих трактов, чтобы обеспечить необходимое качество воспроизведения. Для расчёта усталостной прочности конструкции ракеты и предотвращения её разрушения под действием шумов двигателей необходимо знать спектр звука двигателя. При временном 3. а. сигнал представляется суммой коротких импульсов, характеризующихся временем появления и амплитудой. Методы временного 3. а. лежат в основе принципа действия гидролокаторов и эхолотов. Определение времени прихода 'импульсов позволяет судить об удалении цели или о глубине водоёма.

[922-7.jpg]

Форма колебаний и частотно-амплитудные спектры звуков рояля (частота 128 гц} и кларнета (275 гц).

По амплитуде отражённого сигнала можно судить о характере цели или дна. На практике часто возникает необходимость в характеристике, дающей общее представление об изменении сигнала во времени без его разложения на гармонические или импульсные составляющие. В качестве такой временной характеристики часто пользуются т. н. корреляционной функцией (см. Корреляция), к-рая определяется как среднее по времени результата перемножения анализируемого сигнала на его запаздывание (автокорреляция) Либо на запаздывание второго анализируемого сигнала (взаимная корреляция). Методами корреляционного анализа решаются такие задачи, как предсказание характера изменения процесса во времени, выделение слабых акустич. сигналов на фоне помех, измерение искажений вещательных сигналов при передаче через электроакустич. системы и др. По корреляционным функциям Могут быть найдены многие физич. характеристики акустич. процессов, систем н звуковых полей, представляющие практич. интерес.

Лит.: Блинова Л. П., Колесников А. Е.. Ланганс Л. Б., Акустические Измерения, М., 1971; Xаркевич А. А., Спектры и анализ, 4 изд., М., 1962. Н. Н. Нисаревский.

ЗВУКИ РЕЧИ, звуки, образуемые в целях языкового общения посредством произносительного аппарата человека (лёгкие, гортань с голосовыми связками, глотка, полость рта с языком, губы, нёбная занавеска, полость носа). При рассмотрении 3. р. различают три аспекта: артикуляторный, акустический и лингвистический (социальный); иногда выделяют ещё ц 4-й аспект - перцептивный (восприятие). Существует много классификаций 3. р., основанных преим. па артикуляторных признаках.

В 3. р. представлены как тоны, так и шумы. Первые возникают в результате периодич. колебаний источника звука (в речи - голосовых связок). Вторые образуются вследствие пепериодич. колебаний в выходящей из лёгких струе воздуха, встречающей в надгортанных полостях преграду в виде смычки или щели. К тонам относятся прежде всего гласные, к шумам - глухие согласные; звонкие согласные представляют собой сочетание тона и шума. Гласные обычно различаются по ряду и подъёму, согласные - по участию голоса, по характеру шумообразующей преграды и по действующему органу или месту образования.

В акустич. отношении 3. р., подобно др. звукам в природе, представляют собой колебания упругой среды, обладающие определённым спектром, интенсивностью и длительностью. Частотный диапазон 3. р., учитывая не только осн. тон, но и входящие в спектр 3. р. высокочастотные составляющие, равен от 70 до 10000-12000 гц, что полностью укладывается в возможности слухового восприятия человека (16-20 000 гц). To же относится к интенсивности: нормальный уровень речи не превышает 80-90 дб, тогда как уровень болевого ощущения звука равен 120-130 дб.

В совр. фонетике (фонологии) общепризнана ведущая роль лингвистич. аспекта, т.к. только с этой точки зрения можно говорить об отдельном 3. р. Последний не дан в речи непосредственно, он определим только через фонему - как представитель или как реализация её.

Лит.: Матусевич М. И., Введение в общую фонетику, М., 1959; Зиндер Л. Р.. Общая фонетика, Л., 1960; Сапожков М. Л., Речевой сигнал в кибернетике и связи, М., 1963; Фант Г., Акустическая теория речеобразования, пер. с англ., М.. 1964; Буланин Л. Л., Фонетика современного русского языка, М., 1970. Л. Р. Зиндер


ЗВУКОВАЯ КОЛОНКА, групповой акустический излучатель в виде линейной (обычно вертикальной) цепочки из однотипных, синфазно включённых и установленных в общем кожухе громкоговорителей.
[922-8.jpg]

Звуковая колонка типа 10 КЗ-1 со снятым кожухом (слева) и на треноге (справа).

Громкоговорители (обычно электродинамические) укрепляются на пластине с отверстиями (рис.) и подключаются через общий согласующий трансформатор и подводящие провода к усилителю мощности электрич. колебаний звуковых частот или трансляционной сети. Пластина и кожух служат акустич. экраном; для устранения вредных вибраций стенки кожуха, как правило, демпфируют. 3. к. выпускаются разной мощности - от 2 до 100 вm, число громкоговорителей - от 2 до 8. Т. к. размеры 3. к. по высоте много больше поперечных размеров, диаграмма направленности излучения в вертикальной плоскости значительно острее, чем в горизонтальной у одиночного громкоговорителя. Такая характеристика направленности удобна при озвучении больших площадей и закрытых помещений (стадионы, конференц-залы). В последних она помогает снизить помехи из-за реверберации. В тех случаях, когда направленность излучения 3. к. в вертикальной плоскости недостаточна, применяют составные 3. к. Они составляются из синфазно включённых двух, трёх 3. к., расположенных друг над другом.

Лит.: фурдуев В. В., Акустические основы вещания, М., 1960.

Н. Т. Молодая, Л. 3. Папернов.

ЗВУКОВАЯ РАЗВЕДКА, часть артиллерийской разведки. Ведётся в наземной артиллерии звукометрии. подразделениями, оснащёнными спец. звукометрич. приборами, позволяющими определять координаты ненаблюдаемых стреляющих батарей противника (орудий, миномётов, пусковых установок реактивной артиллерии) по звуку их выстрелов, а при корректировании огня своей артиллерии определять места падения снарядов или мин по звуковым волнам, возникающим при разрывах снарядов. Приборы 3. р. рассчитаны преим. на приём звуков выстрелов (разрывов); посторонние звуки, возникающие на поле боя, на работу приборов практически не влияют, если их источники находятся на расстоянии неск. сот м от звуковых постов.

ЗВУКОВАЯ СИГНАЛИЗАЦИЯ, передача и приём сообщений на расстоянии при помощи голоса или акустич. приборов (рупор, сирена, свисток и др.). См. Сигнализация военная.



ЗВУКОВИДЕНИЕ, получение с помощью звука видимого изображения объекта, находящегося в оптически непрозрачной среде. 3. осн. на проникающей способности звука и особенно ультразвука и их визуализации (см. Звукового поля визуализация). В 3. обычно используются упругие колебания в диапазоне частот от 10 кгц до 100 Мгц и выше. Ультразвуковые волны хорошо проходят через металлы, пластмассы, большинство строит. материалов, живые ткани и жидкости. По отражению и преломлению ультразвуковых лучей от границ раздела твёрдое тело - газ (вследствие неодинаковых скоростей распространения ультразвуковых волн в различных средах) можно обнаруживать твёрдые тела и газовые пузыри в жидкостях и живых тканях, а также трещины, раковины и пустоты в твёрдых телах, что используется для изучения и контроля структуры и геометрии внутр. неоднородностей оптически непрозрачных тел. 3. выгодно отличается, напр., от рентгеноскопии тем, что ультразвук легко фокусируется акустич. линзами и зеркалами в узкие, ограниченные в пространстве пучки (лучи), тогдакак рентгеновские лучи, обладающие высокой проникающей способностью, практически невозможно сфокусировать-при рентгеноскопии получаются лишь теневые, силуэтные изображения.
[922-9.jpg]

Рис. 2. Схемы звуковидения: а - в отражённых лучах (общая схема); б - по методу дифракции; в ~ в "эвуковизоре" (лабораторная модель); 1 - источник (излучатель) ультразвука; 2 - объект наблюдения; 3 - акустический объектив; 4 - ультразвуковое изображение; 5 - преобразователь; 6 - видимое изображение (экран); 7 - лазер; 8 - ультразвуковые волны; 9 - электронноакустический преобразователь; 10 - усилитель.

Заметитьс помощью рентгеновских лучей в металлич. листе толщиной 5 мм расслоение в неск. мкм - задача практически неразрешимая. А ультразвуковой луч, отражённый от границы раздела металл - газ, достаточно чётко "рисует" такие расслоения (рис. 1, а). Почечный камень размером 2 мм для рентгеновских лучей почти не различим, 3. выявляет его вполне отчётливо (рис. 1, б).

Общая схема 3. (рис. 2, а) включает источник ультразвука, объект наблюдения, акустический объектив, с помощью к-рого формируется ультразвуковое изображение, и преобразователь ультразвукового изображения в оптически видимое.

Применяют также способ 3., осн. на свойстве свободно взвешенных мельчайших металлич. пластинок-чешуек поворачиваться плоскостью поперёк направления распространения ультразвука. Исследуемый объект помещается между источником ультразвука и сосудом с жидкостью, в к-рой плавают чешуйки. Освещённые пучком параллельных световых лучей переориентированные чешуйки образуют светлое изображение на сером фоне, соответствующее распределению интенсивности ультразвука (звукового давления), прошедшего сквозь объект. Схема установки для получения видимого изображения с использованием явления дифракции лазерного луча на ультразвуковой волне, прошедшей через объект наблюдения, показана на рис. 2, 6. Световой пучок лазера, сформированный оптич. системой, пронизывает жидкость, в к-рой находится объект наблюдения. Показатель преломления жидкости, облучаемой ультразвуком, изменяется таким образом, что оптич. луч, проходя жидкость, создаёт на экране дифракционные полосы, содержащие изображение объекта.

Системы 3.,использующие приведённые методы визуализации ультразвуковых полей, имеют чувствительность порядка 1-0,01 вт/см2 . Однако для мн. практич. целей необходима значительно более высокая чувствительность. Этому требованию отвечают электронноакустические преобразователи (ЭАП), чувствительность к-рых 10-9-10-10вт/см2. Впервые на возможность преобразования ультразвукового изображения в оптически видимое с помощью электроннолучевых трубок указал (1936) сов. учёный С. Я. Соколов. Развитие методов визуализации ультразвуковых полей и совершенствование аппаратуры 3., в частности разработка высокочувствит. ЭАП, обусловили создание "звуковизоров" (рис. 2, в) и др. средств 3. для применения их в дефектоскопии, мед. диагностике, при строит. работах, в подводной навигации и др.

Примером практич. 3. может служить метод поверхностного рельефа, при к-ром ультразвуковое изображение исследуемого объекта воссоздаётся на свободной поверхности жидкости. Под воздействием ультразвука на поверхности жидкости, напр. воды, образуется рябь, хорошо заметная при косом освещении. Очертания и рельеф ряби воспроизводят ультразвуковое изображение объекта (рис. 3). По такому принципу работают устан