загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

ающих одинаковыми пространственными скоростями. Если 3. п. приближается к нам, то направления собственных движений входящих в пего звёзд, вследствие перспективы, как бы исходят из одной точки - радианта потока. Если же 3. п. удаляется от нас, то собственные движения направлены к одной точке - антирадианту потока. Лучевая скорость той или иной звезды потока[921-80.jpg] где V - пространственная скорость потока в км/сек, a [921-81.jpg] - угловое расстояние звезды от радианта. Собств. движение звезды[921-82.jpg] потока где r - расстояние до звезды, выраженное в парсеках. Если измерены собств. движения звёзд потока и т. о. определено положение радианта, то достаточно измерить лучевую скорость хотя бы одной из этих звёзд, чтобы определить расстояние до каждой из звёзд потока. Определённые таким способом расстояния наз. групповыми. Они обладают значит. точностью.

К числу 3. п. принадлежат нек-рые звёздные скопления, напр. Гиады. Однако звёзды одного и того же потока часто не Образуют заметных сгущений звёзд и занимают на небе большие области. Такие 3. п. обнаруживаются только благодаря общности их собств. движений. Далёкие 3. п. выявить невозможно, т. к. у далёких звёзд собств. движения очень малы и определяются неуверенно. Наиболее известный 3. п.- поток Большой Медведицы, к к-рому относятся 5 ярких звёзд из 7, образующих ковш, и 8 менее ярких звёзд этого созвездия, имеющих такую же пространственную скорость. Возможно, к потоку Большой Медведицы относятся ещё неск. десятков звёзд (в др. областях неба), имеющих собств. движения, направленные на радиант потока. Звёздная плотность (количество звёзд в единице объёма) только тех звёзд, к-рые принадлежат потоку Большой Медведицы, очень мала: она во много раз меньше ср. звёздной плотности в окрестностях Солнца. Т. о., поток не образует существенного Пространственного сгущения.

Совпадение пространственных скоростей звёзд, относимых к тому или иному 3. п., не может быть случайным и указывает на общность происхождения звёзд потока.

Т. А. Агекян.



ЗВЁЗДНЫЕ СИСТЕМЫ, термин, обычно применяемый по отношению к галактикам, в т. ч. к нашей Галактике.



ЗВЁЗДНЫЕ СКОПЛЕНИЯ, группы звёзд, связанных между собой силами взаимного притяжения и имеющих совместное происхождение, близкий возраст и хи-мич. состав. Обычно имеют плотное центральное сгущение (ядро), окружённое значительно менее плотной корональной областью. Диаметры 3. с. находятся в пределах от нескольких до 150 парсек, причём радиусы корональных областей в несколько (иногда в десяток) раз превышают радиусы ядер. Исторически сложилось деление 3. с. на рассеянные (иногда наз. открытыми, галактическими) и шаровые. Различие между ними в основном определяется массой и возрастом этих образований. Рассеянные 3. с., как правило, содержат десятки и сотни, редко тысячи, а шаровые - десятки и сотни тысяч звёзд. Примеры рассеянных 3. с.- Плеяды, Ясли, Гиады; примеры шаровых 3. с.- скопление МЗ в созвездии Гончих Псов и М13 в созвездии Геркулеса.

Рассеянные скопления в нашей Галактике концентрируются в плоскости симметрии Млечного Пути (галактич. плоскости) и обладают небольшими скоростями относительно Солнца (в среднем 20 км/сек). Среди них можно выделить ассоциированные со спиральными ветвями скопления, возникшие сравнительно недавно (менее 100 млн. лет назад), и скопления промежуточного возраста, или скопления диска, не показывающие связи со спиральными ветвями и слабее концентрирующиеся к галактич. плоскости. Все рассеянные скопления имеют нормальное содержание металлов, присущее звёздам плоской составляющей Галактики. Шаровые 3. с. в нашей Галактике распределены в сфероидальном объёме, центр к-рого совпадает с центром Галактики, сильно концентрируются к этому центру и характеризуются большими скоростями относительно Солнца (в среднем 170 км/сек).

Обычно они бедны металлами, однако объекты, наблюдаемые в околоцентр. областях Галактики, богаче металлами, чем те, к-рые наблюдаются на периферии нашей звёздной системы. Важные сведения о эволюции 3. с. даёт изучение Герцшпрунга - Ресселла диаграмм или диаграмм "звёздная величина - показатель цвета". Диаграммы зависимости "звёздная величина - показатель цвета" звёзд типичных рассеянных и шаровых 3. с. нашей Галактики существенно различны (см. рис.). Интерпретация этих диаграмм с точки зрения совр. теорий звёздной эволюции позволяет заключить, что звёзды типичных шаровых 3. с. в 100-1000 раз старше звёзд рассеянных 3. с.

Кинематич. характеристики и пространственное распределение шаровых 3. с. нашей Галактики отражают особенности начального распределения в Галактике вещества, из к-рого на ранней стадии её существования возникли эти образования. Диаграммы "звёздная величина - показатель цвета" звёзд шаровых 3. с. той эпохи должны напоминать соответствующие диаграммы совр. рассеянных 3. с. Подобные молодые шаровые 3. с. наблюдаются в соседних галактиках (напр., NGC 1866 в Большом Магеллановом Облаке). В совр. эпоху 3. с. в нашей Галактике возникают только вблизи галактич. плоскости, в районах газовопылевых спиральных ветвей.

Одновременно с изменением физич. характеристик членов 3. с. происходит их динамич. эволюция. Сближения между звёздами в ядрах 3. с. приводят к взаимному обмену энергией их движения. В результате нек-рые члены 3. с. получают избыточную энергию и переходят в область короны или вообще покидают скопление. Ядро при этом, как правило, сжимается. Процесс диссипации ядра происходит особенно быстро у скоплений с небольшим количеством членов, т. е. рассеянных. Поэтому из старых скоплений в нашей Галактике сохранились лишь наиболее массивные из них, т. е. шаровые. Среди слабых членов молодых рассеянных скоплений обычно наблюдаются орионовы и вспышечные переменные звёзды. В нек-рых шаровых скоплениях содержатся переменные звёзды типа RR Лиры и W Девы, а в рассеянных скоплениях иногда встречаются цефеиды. Наиболее близкие к Солнцу 3. с. (напр., Гиады), в собств. движениях членов к-рых наблюдаются явления перспективы (направления собств. движений при продолжении их на небесной сфере пересекаются в одной точке), наз. движущимися. Движущиеся 3. с. играют особую роль в проблеме определения звёздных расстояний, т. к. расстояния до них могут быть надёжно определены простым геометрич. методом. См. также Звёздные ассоциации, Звёздная астрономия. Лит.: Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954: Сойер -Xогг Э., Звездные скопления, в сб.: Строение звездных систем, М., 1962.

П. Н. Холопов.


ЗВЁЗДНЫЕ СУТКИ, промежуток времени, равный периоду вращения Земли вокруг оси относительно звёзд (точнее, относительно весеннего равноденствия точки). 3. с. равны 24 ч звёздного времени, или 23 ч 56 мин 4,091 сек среднего солнечного времени.



ЗВЁЗДНЫЕ ЧАСЫ, часы, отрегулированные по звёздному времени. По отношению к "обычным", применяемым в обиходе часам, идущим по среднему солнечному времени, 3. ч. уходят вперёд на 3 мин 56 сек в сутки. 3. ч. применяются при астрономич. наблюдениях. См. Время.

ЗВЁЗДНЫЙ ГОД, сидерический год, одна из единиц времени, применяемых в астрономии; см. Год.

ЗВЁЗДНЫЙ ДОЖДЬ, появление многочисл. метеоров (иногда до 1000 за 1 мин) в течение непродолжительных промежутков времени, происходящее при встрече Земли с роем метеорных тел (см. Метеорный поток).



ЗВЁЗДНЫЙ ИНТЕРФЕРОМЕТР, астрономический оптич. инструмент для измерения чрезвычайно малых угловых расстояний (десятые и сотые доли секунды дуги) с использованием явления интерференции света. Применяется в основном для измерения угловых расстояний между компонентами тесных двойных звёзд (с близкими по блеску компонентами) и угловых диаметров звёзд. Различают простой и перископич. 3. и. Первый - это обычный телескоп, на объектив к-рого надет непрозрачный экран с двумя одинаковыми по форме отверстиями, напр. параллельными щелями.

Схема перископического звёздного интерферометра: S1, S2, S3, S4 - плоские зеркала.
[921-83.jpg]



В этом случае на изображении звезды наблюдаются интерференционные полосы, вид к-рых меняется при изменении расстояния между отверстиями в экране, а в случае двойных звёзд - и от взаимной ориентации линии, соединяющей компоненты двойной звезды и отверстий в экране. Простой 3. и. позволяет примерно удвоить разрешающую способность телескопа.

В периодич. 3. и., предложенном А. А. Майкельсоном (США), перед объективом телескопа установлена оптич. система из двух пар плоских зеркал, позволяющая направить в объектив телескопа два более удалённых друг от друга световых луча от измеряемого источника. Эта система увеличивает разрешающую способность телескопа пропорционально расстоянию между крайними зеркалами. В 1920-21 с помощью перископич. 3. и. были впервые измерены угловые диаметры неск. звёзд. Лит.: Мартынов Д. Я., Курс практической астрофизики, 2 изд., М., 1967. Е. С. Кулагин.



ЗВЁЗДНЫХ ТЕМПЕРАТУР ШКАЛЫ, соотношения между получаемыми из наблюдений величинами, характеризующими распределение энергии в спектре звезды (спектральный класс, показатель цвета и др.), и эффективной темп-рой (см. Температура в астрофизике); используются при сопоставлении результатов теоретич. исследований строения и эволюции звёзд с наблюдениями. Для определения 3. т. щ. необходимо знатьлинейные размеры звезды и полное количество излучаемой ею энергии. Этим обстоятельством обусловлены трудности определения 3. т. ш., связанные с необходимостью фотометрии звёзд в далёких ультрафиолетовой и инфракрасной областях спектра и малым количеством звёзд с известным радиусом (в основном ближайшие звёзды - сверхгиганты и затменные переменные звёзды). При одинаковом спектральном классе (см. Спектральная классификация звёзд) звёзды-карлики горячее звёзд-гигантов и сверхгигантов, т. к. из-за меньшей силы тяжести на поверхности последних одинаковая степень ионизации и возбуждения атомов, определяющая спектральный класс, достигается при меньшей темп-ре. В таблице приведена 3. т. ш., составленная в основном по данным амер. астрономов Г. Джонсона (1966), а также Д. Мортона и Т. Адамса (1968), подтверждаемым новейшими измерениями. Ю. Н. Ефремов.








Спектральные классы


Эффективная температура
звёзды-карлики


звёзды-гиганты
В0


28000


21000
В5


15500


11500
А0


9850


9400
F0


7030


7500
G0


5900


5800
К0


5240


4900
М0


3750


3750
М5


3100


2950
М8


2750


--











ЗВЕЗДОРЫЛ (Condylura cristata), насекомоядное млекопитающее сем. кротов. По внешнему облику напоминает обыкновенного крота. Дл. тела 100-127 мм, хвоста - 55-85 мм, весит 40-85 г. Передние лапы слабее, чем у остальных кротов. На конце морды имеется голый овальный диск с кожистыми бахромчатыми краями наподобие многолучевой звезды (отсюда назв.). Окраска шерсти тёмно-коричневая или чёрная. Распространён в Сев. Америке (в юго-вост. Канаде и сев.-вост. части США).
[921-84.jpg]

Ведёт подземный, роющий образ жизни. Обитает на лугах, огородах, в садах и по опушкам лесов с мягкой, удобной для рытья почвой. Питается дождевыми червями и почвенными насекомыми. Детёныши (от 2 до 7) родятся один раз в год.


ЗВЕЗДОЧЁТЫ (Uranoscopidae), семейство рыб отряда окунеобразных. Рот большой, верхний, почти вертикальный, губы бахромчатые, глаза расположены на верху головы. Дл. тела до 30 см.

Обыкновеннын звездочёт.
[921-85.jpg]

Распространены гл. обр. в тёплой и умеренной зонах Атлантического, Индийского и Тихого ок., особенно у берегов Японии и Вост. Индии. Хищники; подкарауливают жертву, зарывшись в песок. В СССР в Чёрном м. встречается обыкновенный 3. (Uranoscopus scaber), приманивающий жертву с помощью имеющегося на нижней челюсти червеобразного отростка. У нек-рых видов рода Astroscopus на голове имеются электрич. органы. 3. промыслового значения не имеют.

ЗВЕЗДЧАТКА (Stellaria), род растений сем. гвоздичных. Многолетние, реже одно- и двулетние травы с супротивными линейно-ланцетными или яйцевидными листьями.
[921-86.jpg]

Звездчаткаланцетолистная.

Околоцветник б. ч. 5-членный, лепестки белые, двураздельные или выемчатые, тычинок 10; плод - коробочка. Ок. 100 видов по всему земному шару. В СССР более 50 видов. Наиболее распространены 3. ланцетолистная (S. holostea), растущая в лиственных н смешанных лесах, по опушкам, в садах и парках, и 3. злаковидная, или пьяная трава (S. graminea),- на лугах, в светлых лесах и на опушках, иногда в посевах; ядовита для лошадей и рогатого скота. 3. средняя, или мокрица (S. media),- трудно искоренимый сорняк огородов и полей, обитающий также у жилья и на сорных местах.

Лит.: Котт С. А., Сорные растения и борьба с ними, 3 изд., М., 1961. Т.В.Егорова.



ЗВЁЗДЫ, самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше 3. только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды а Центавра - 4 года 3 мес. Из-за больших расстояний от Земли 3. и в телескоп видны как точки, а не как диски (в отличие от планет). Число 3., видимых невооружённым глазом на обоих полушариях небесной сферы в безлунную ночь, составляет ок. 5 тыс. В мощные телескопы видны миллиарды 3.

Общие сведения о звёздах. Краткая история изучения звёзд. Изучение 3. было вызвано потребностями материальной жизни общества (необходимость ориентировки при путешествиях, создание календаря, определение точного времени). Уже в глубокой древности звёздное небо было разделено на созвездия. Долгое время 3. считались неподвижными точками, по отношению к к-рым наблюдались движения планет и комет. Со времён Аристотеля (4 в. до н. э.) в течение многих столетий господствовали взгляды, согласно к-рым звёздное небо считалось вечной и неизменной хрустальной сферой, за пределами к-рой находилось жилище богов. В конце 16 в. итальянский астроном Джордано Бруно учил, что 3.- это далёкие тела, подобные нашему Солнцу. В 1596 (нем. астроном И. Фабрициус) была открыта первая переменная 3., а в 1650 (итал. учёный Дж. Риччоли) - первая двойная 3. В 1718 англ. астроном Э. Галлей обнаружил собственные движения трёх 3. В сер. и во 2-й пол. 18 в. рус. учёный М. В. Ломоносов, нем. учёный И. Кант, англ. астрономы Т. Райт и В. Гершель и др. высказывали правильные идеи о той звёздной системе, в к-рую входит Солнце. В 1835-39 рус. астроном В. Я. Струве, нем. астроном Ф. Бессель и англ. астроном Т. Гендерсон впервые определили расстояния до трёх близких 3. В 60-х гг. 19 в. для изучения 3. применили спектроскоп, а в 80-х гг. стали пользоваться и фотографией. Рус. астроном А. А. Белопольский в 1900 экспериментально доказал для световых явлений справедливость принципа Доплера, на основании к-poгo по смещению линий в спектре небесных светил можно определить их скорость движения вдоль луча зрения. Накопление наблюдений и развитие физики расширили представления о 3.

В нач. 20 в., особенно после 1920, произошёл переворот в науч. представлениях о 3. Их начали рассматривать как физич. тела; стали изучаться структура 3., условия равновесия их вещества, источники энергии. Этот переворот был связан с успехами атомной физики, к-рые привели к количественной теории звёздных спектров, и с достижениями ядерной физики, давшими возможность провести аналогичные расчёты источников энергии и внутр. строения 3. (наиболее важные результаты были получены нем. учёными Р. Эмденом, К. Шварцшильдом, X. Бете, англ. учёными А. Эддингтоном, Э. Милном, Дж. Джинсом, амер. учёными Г. Ресселом, Р. Кристи, сов. учёным С. А. Жевакиным). В сер. 20 в. исследования 3. приобрели ещё большую глубину в связи с расширением наблюдательных возможностей и применением электронных вычислительных машин (амер. учёные М. Шварцшильд, А. Сандидж, англ. учёный ф. Хойл, япон. учёный С. Хаяси и др.). Большие успехи были достигнуты также в изучении процессов переноса энергии в фотосферах 3. (сов. учёные Э. Р. Мустель, В. В. Соболев, амер. учёный С. Чандрасекар) и в исследованиях структуры и динамики звёздных систем (голл. учёный Я. Оорт, сов. учёные П. П. Паренаго, Б. В. Кукаркин и др.).

Параметры звёзд. Осн. характеристики 3.- масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии); эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме осн. параметров, употребляются их производные: эффективная темп-ра; спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере 3.; абс. звёздная величина (т. е. звёздная величина, к-рую имела бы 3. на стандартном расстоянии 10 парсек); показатель цвета (разность звёздных величин, определённых в двух разных спектральных областях).
[921-87.jpg]

Рис.1. Сравнительные размеры звёзд-гигантов и звёзд-карликов.

Звёздный мир чрезвычайно многообразен. Нек-рые 3. в миллионы раз больше (по объёму) и ярче Солнца (звёзды-гиганты); в то же время имеется множество 3., к-рые по размерам и количеству излучаемой ими энергии значит. уступают Солнцу (звёзды-карлики) (см. рис. 1). Разнообразны и светимости 3.; так, светимость 3. S Золотой Рыбы в 400 тыс. раз больше светимости Солнца. 3. бывают разреженные и чрезвычайно плотные. Ср. плотность ряда гигантских 3. в сотни тысяч раз меньше плотности воды, а ср. плотность т. н. белых карликов, наоборот, в сотни тысяч раз больше плотности воды. Массы 3. различаются меньше.

У нек-рых типов 3. блеск периодически изменяется; такие 3. наз. переменными звёздами. Грандиозные изменения, сопровождаемые внезапными увеличениями блеска, происходят в новых звёздах. При этом за неск. суток небольшая звезда-карлик увеличивается, от неё отделяется газовая оболочка, к-рая, продолжая расширяться, рассеивается в пространстве. Затем 3. вновь сжимается до небольших размеров. Ещё большие изменения происходят во время вспышек сверхновых звёзд.

Изучение спектров 3. позволяет определить химич. состав их атмосфер. 3., как и Солнце, состоят из тех же химич. элементов, что и все тела на Земле.

Табл. 1. - Наиболее яркие звёзды
Название


Видимая звёздная величина (система V)


Спектральный класс и класс светимости


Собственное движение


Параллакс


Лучевая скорость, км/сек


Тангенциальная скорость,

км/сек


Абсолютная звёздная величина (система V)


Светимость (в единицах светимости Солнца)
[921-88.jpg]


Большого Пса


- 1,46 8,5


А1 V А5


1,32"


0,375"


-8


17


+ 1,4 + 11,4


22,4 0,002
[921-89.jpg]


Киля


-0,75


FO Ib-II


0,02


0,018


+20


5


-4,4


4700
[921-90.jpg]


Волопаса


-0,05


К2 IIIp


2,28


0,090


-5


120


-0,3


107
[921-91.jpg]


Лиры


+ 0,03


АО V


0,34


0,123


-14


13


+ 0,5


51
[921-92.jpg]


Центавра


0,06 1,51


G2 V

К5


3,68


0,751


-22


23


+ 4,5 + 5,9


1,3 0,34
[921-93.jpg]


Возничего


0,08


G8 III


0,44


0,073


+ 30


29


-0,6


141
[921-94.jpg]


Ориона


0,13


В8 Iа


0,00


0,003


+24


0


-7,5


81 000
[921-95.jpg]


Малого Пса


0,37 10,8


F5 IV-V белый карлик


1,25


0,288


-3


20


+2,6 + 13,1


7,4 0,0004
[921-96.jpg]


Ориона


0,42 пер.


М2 Iab


0,03


0,005


+ 21


28


-6,1


22 400
[921-97.jpg]


Эридана


0,47


В5 IV


0,10


0,032


+ 19


15


-2,0


510
[921-98.jpg]


Центавра


0,59


В1 II


0,04


0,016


-12


11


-3,4


1860
[921-99.jpg]


Орла


0,76


А7 IV-V


0,66


0,198


-26


16


+ 2,3


9,8
[921-100.jpg]


Креста


0,79 1,3


В1 IV В1


0,04


0,008


-6


24


-4,7 -4,2


6200 3700
[921-101.jpg]


Тельца


0,86 13,6


К5 III М2 V


0,20


0,048


+54


20


-0,7 + 11,8


155 0,0015
[921-102.jpg]


Скорпиона


0,91 пер. 6,8


Ml Ia В4


0,03


0,019


-3


7


-2,7 + 3,2


980 4,1
[921-103.jpg]


Девы


0,97 пер.


В1 V


0,05


0,021


+ 1


11


-2,4


740
[921-104.jpg]


Близнецов


1,14


КО III


0,62


0,093


+ 3


32


+ 1,0


32
[921-105.jpg]


Южной Рыбы


1,l6


A3 V


0,37


0,144


+6


12


+ 2,0


13
[921-106.jpg]


Лебедя


1,25 пер.


А2 Iа


0,00


0,003


-3


0


-6,2


24 600
[921-107.jpg]


Льва


1,35 пер. 7,6 13


В7 V К2


0,24


0,039


+3


29


-0,7 + 5,6 + 11


155 0,45 0,003

В 3. преобладают водород (ок. 70% по весу) и гелий (ок. 25% ); остальные элементы (среди них наиболее обильны кислород, азот, железо, углерод, неон) встречаются почти точно в том же соотношении, что и на Земле. Для наблюдений пока доступны лишь внешние слои 3. Однако сопоставление данных непосредственных наблюдений с выводами, вытекающими из общих законов физики, позволило построить теорию внутр. строения 3. и источников звёздной энергии.

Солнце по всем признакам является рядовой 3. Имеются все основания предполагать, что многие 3., как и Солнце, имеют планетные системы. Вследствие дальности расстояния пока ещё не удаётся непосредственно увидеть такие спутники 3. даже в самые мощные телескопы. Для их обнаружения необходимы тонкие методы исследования, тщательные наблюдения в течение десятков лет и сложные расчёты. В 1938 швед. астроном Э. Хольмберг заподозрил, а позднее сов. астроном А. Н. Дейч и др. установили существование невидимых спутников у звезды 61 Лебедя и других близких к Солнцу 3. Наша планетная система, т. о., не является исключительным явлением. На многих планетах, окружающих другие 3., также вероятно существование жизни, и Земля не представляет в этом отношении исключения.

3. часто расположены парами, обращающимися вокруг общего центра масс; такие 3. наз. двойными звёздами. Встречаются также тройные и кратные системы 3.

Взаимное расположение 3. с течением времени медленно изменяется вследствие их движений в Галактике. Звёзды образуют в пространстве огромные звёздные системы - галактики. В состав нашей Галактики (к к-рой принадлежит Солнце) входит более 100 млрд. 3. Изучение строения Галактики показывает, что многие 3. группируются в звёздные скопления, звёздные ассоциации и др. образования.

3. изучаются в двух дополняющих друг друга направлениях. Звёздная астрономия, рассматривающая 3. как объекты, характеризующиеся теми или иными особенностями, исследует движение 3., распределение их в Галактике и в скоплениях, различные статистич. закономерности. Предметом изучения астрофизики являются физич. процессы, происходящие в 3., их излучение, строение, эволюция.

Массы звёзд. Массы могут быть определены непосредственно лишь у двойных 3. на основе изучения их орбит. У спектрально-двойных 3. измерения смещений спектральных линий вследствие эффекта Доплера позволяют определить период обращения компонентов и проекции макс. скорости каждого компонента на луч зрения. Аналогичные измерения можно провести и у нек-рых визуально-двойных 3. Этих данных достаточно для вычисления отношения масс компонентов. Абс. значения масс определяются, если система является в то же время и затменно-двойной, т. е. если её орбита видна с ребра и компоненты 3. попеременно закрывают друг друга. Изучение масс двойных 3. показывает, что между массами и светимостями 3. гл. последовательности существует статистич. зависимость (см. "Масса - светимость" диаграмма). Эта зависимость, распространённая и на одиночные 3., позволяет косвенно, определяя светимости 3., оценивать и их массы.

Светимости звёзд и расстояния до них. Осн. метод определения расстояний до 3. состоит в измерении их видимых смещений на фоне более далёких 3., обусловленных обращением Земли вокруг Солнца. По смещению (параллаксу), величина к-рого обратно пропорциональна расстоянию, вычисляют и само расстояние. Однако такой способ измерений применим только к ближайшим 3.

Зная расстояние до 3. и её видимую звёздную величину т, можно найти абс. звёздную величину М по формуле: M = m + 5-5lgr,

где r - расстояние до 3., выраженное в парсеках. Определив средние абс. звёздные величины для 3. тех или иных спектральных классов и сопоставив с ними видимые звёздные величины отд. 3. этих же классов, можно определить расстояния и до удалённых 3., для к-рых параллактич. смещения неощутимы (это т. н. спектральные параллаксы). Абс. звёздные величины нек-рых типов переменных звёзд (напр., цефеид) можно установить по величине периода изменения блеска, что также позволяет определять расстояния до них.

Расстояния оцениваются также по систематич. компонентам лучевых скоростей и собственных движений звёзд, обусловленным особенностями вращения Галактики и движением Солнца (вместе с Землёй) в пространстве и зависящим, т. о., от удалённости 3. Чтобы исключить влияние собственных скоростей отд. 3., определяют расстояние сразу до большой группы их (статистические или групповые параллаксы).

Наиболее яркие 3. приведены в табл. 1, ближайшие 3. - в табл. 2.

Табл. 2. - Ближайшие звёзды
Название


Видимая звёздная величина (система V)


Спектральный класс и класс светимости


Собственное движение


Параллакс


Расстояние, парсек


Абсолютная звёздная величина (система V)
Ближайшая Центавра


10,68


М5е


3,85"


0,762"


1,31


+ 15,1
альфаЦентавра А


0,32


G2 V


3,79


0,751


1,33


+4,76
альфа Центавра В


1,72


K5V

















+ 6,16
Звезда Барнарда


9,54


М5 V


10,30


0,545


1,83


+ 13,22
Вольф № 359


13,66


dM6e


4,84


0,427


2,34


+ 16,62
BD +36°2147

7,47

M2V

4,78

0,396

2,52

+ 10,46
Сириус А

-1,47

А1 V

1,32

0,375

2,66

+ 1,42
Сириус В

8,67

А5













+ 11,55
Лейтен 726-8 (UV Кита)

(12,45 112,95

dм6е dм6е

3,36

0,371

2,69

+ 15,3 + 15,8
Росс № 154

10,6

dМ4е

0,67

0,340

2,93

+ 13,3
Росс № 248

12,24

dM6e

1,58

0,316

3,16

+ 14,74
(эпсилон) Эридана

3,73

К2 V

0,97

0,303

3,30

+6,14
Росс № 128

11,13

dм5

1,40

0,298

3,34

+ 13,50
Лейтен 789-6

12,58

dм6е

3,27

0,298

3,34

+ 14,9
61 Лебедя А

5,19

К5 V

5,22

0,292

3,42

+ 7,52
61 Лебедя В

6,02

К7 V













+8,35
Процион А

0,34

F5 IV- V

1,25

0,288

3,48

+ 2,67
Процион В

10,7

dF













+ 13,1
(эпсилон) Индейца

4,73

К5 V

4,67

0,285

3,50

+ 7,0
BD +59° 1915 А

8,90

ам4

2,29

0,278

3,58

+ 11,12
BD+590 1915 В

9,69

dM5













+ 11,91
BD +43° 44А

8,07

Ml V

2,91

0,278

3,58

+ 10,29
BD +43° 44 В

11,04

Мб V













+ 13,26
(тау) Кита

3,50

G8 Vp

1,92

0,275

3,62

+ 5,70
CD +36° 15693

7,39

М2 V

6,87

0,273

3,65

+ 9,57
BD +5° 1668

9,82

ам4

3,73

0,266

3,75

+ 11,95
CD -39° 4192

6,72

M0I

3,46

0,255

3,90

+8,75
Звезда Каптейна

8,8

sdMO

8,79

0,251

3,99

+ 10,8























Температуры и спектральные классы звёзд. Распределение энергии в спектрах раскалённых тел неодинаково; в зависимости от темп-ры максимум излучения приходится на разные длины волн, меняется цвет суммарного излучения. Исследование этих эффектов у 3., изучение распределения энергии в звёздных спектрах, измерения показателей цвета позволяют определять их темп-ры (см. Температура в астрофизике). Темп-ры 3. определяют также по относительным интенсивностям нек-рых линий в их спектре, позволяющим установить спектральный класс 3. (см. Спектральная классификация звёзд). Спектральные классы 3. зависят от темп-ры и с убыванием её обозначаются буквами: О, В, A, F, G, К, М- Кроме того, от класса G ответвляется побочный ряд углеродных звёзд С (ранее обозначавшихся R, N), а от класса К - побочная ветвь S. Из класса О выделяют более горячие 3.- ядра планетарных туманностей (класс Р) и Вольфа - Райе звёзды с широкими яркими линиями излучения в спектре (класс W). Зная механизм образования линий в спектрах, темп-ру можно вычислить по спектральному классу, если известно ускорение силы тяжести на поверхности 3., связанное со средней плотностью её фотосферы, а следовательно, и размерами 3. (плотность может быть оценена по тонким особенностям спектров). Зависимость спектрального класса или показателя цвета от эффективной темп-ры 3. наз. шкалой эффективных темп-р. Зная темп-ру, можно теоретически рассчитать, какая доля излучения 3. приходится на невидимые области спектра- ультрафиолетовую и инфракрасную. Абс. звёздная величина и поправка, учитывающая излучение в ультрафиолетовой и инфракрасной частях спектра (болометрическая поправка), дают возможность найти полную светимость звезды.

Радиусы звёзд. Зная эффективную темп-ру Tef и светимость L, можно вычислить радиус R звезды по формуле:

[922-1.jpg]

основанной на Стефана - Больцмана законе излучения (а - постоянная Стефана). Радиусы 3. с большими угловыми размерами могут быть измерены непосредственно с помощью звёздных интерферометров. У затменно-двойных 3. могут быть вычислены значения наибольших диаметров компонентов, выраженные в долях большой полуоси их относительной орбиты.

Вращение звёзд. Вращение 3. изучается по их спектрам. При вращении один край диска 3. удаляется от нас, а другой приближается с той же скоростью.

Рис. 2. ДиаграммаГерцшпрунга -Ресселла.

[922-2.jpg]

В результате в спектре 3., получающемся одновременно от всего диска, линии расшяряются и, в соответствии с принципом Доплера, приобретают характерный контур, по к-рому возможно определять скорость вращения. 3. ранних спектральных классов О, В, А вращаются со скоростями (на экваторе) 100-200 км/сек и больше. Скорости вращения более холодных 3.- значительно меньше (неск. км/сек). Уменьшение скорости вращения 3. связано, по-видимому, с переходом части момента количества движения к окружающему её газо-пылевому диску вследствие действия магнитных сил. Из-за быстрого вращения 3. принимает форму сплюснутого сфероида. Излучение из звёздных недр просачивается к полюсам скорее, чем к экватору, вследствие чего темп-pa на полюсах оказывается более высокой. Поэтому на поверхности 3. возникают меридиональные течения от полюсов к экватору, к-рые замыкаются в глубоких слоях 3. Такие движения играют существенную роль в перемешивании вещества в слоях, где нет конвекции.



Зависимости между звёздными параметрами. Массы 3. заключены в пределах от 0,04 до 100 масс Солнца, светимости от 5*10-4 до 105 светимостей Солнца, радиусы от 2*10-1 до 103 радиусов Солнца. Эти параметры связаны определёнными зависимостями. Наиболее важные из них выявляются на диаграммах "спектр - светимость" (Герцшпрунга - Ресселла диаграммах) или "эффективная температура - светимость" и др. Почти все 3. располагаются на таких диаграммах вдоль неск. полос, схематически изображённых на рис. 2 и соответствующих различным последовательностям, или классам светимости. Большинство 3. расположено на гл. последовательности (V класс светимости). Левый её конец образуют 3. класса О с темп-рами 30 000-50 000°, правый -красные звёзды-карлики класса М с темп-рами 3000-4000°. На диаграмме видна последовательность гигантов (III класс), в к-рую входят: 3. высокой светимости (т. е. имеющие большие радиусы). Выше расположены последовательности ещё более ярких сверхгигантов Ia, Iв и II. (Принадлежность 3. к числу карликов, гигантов и сверхгигантов обозначалась ранее буквами d, g и с перед спектральным классом.) Внизу диаграммы расположены белые карлики (VII), размеры к-рых сравнимы с размерами Земли при плотности порядка 106 г/см3. Кроме этих осн. последовательностей, отмечаются субгиганты (IV) и субкарлики (VI). Диаграмма Герцшпрунга - Ресселла нашла своё объяснение в теории внутр. строения 3.

Внутреннее строение звёзд. Поскольку недра 3. недоступны непосредственным наблюдениям, внутреннее строение 3. изучается путём построения теоретич. звёздных моделей, к-рым соответствуют значения масс, радиусов и светимостей, наблюдаемые у реальных 3. В основе теории внутр. строения обычных 3. лежит представление о 3. как о газовом шаре, находящемся в механич. и тепловом равновесии, в течение длительного времени не расширяющемся и не сжимающемся. Механич. равновесие поддерживается силами гравитации, направленными к центру 3., и газовым давлением в недрах 3., действующим наружу и уравновешивающим силы гравитации. Давление растёт с глубиной, а вместе с ним увеличиваются и плотность и темп-ра. Тепловое равновесие заключается в том, что темп-pa З.- во всех её элементарных объёмах - практически не меняется со временем, т. е. что количество энергии, уходящей из каждого такого объёма, компенсируется приходящей в него энергией, а также энергией, вырабатываемой там ядерными или др. источниками.

Темп-ры обычных 3. меняются от неск. тыс. градусов на поверхности до десяти млн. градусов и более в центре. При таких темп-pax вещество состоит из почти полностью ионизованных атомов, благодаря чему оказывается возможным в расчётах звёздных моделей применять уравнения состояния идеального газа. При исследованиях внутр. строения 3. существенное значение имеют предпосылки об источниках энергии, химич. составе 3. и о механизме переноса энергии.

Осн. механизмом переноса энергии в 3. является лучистая теплопроводность. При этом диффузия тепла из более горячих внутр. областей 3. наружу происходит посредством квантов ультрафиолетового излучения, испускаемого горячим газом. Эти кванты поглощаются в др. частях 3. и снова излучаются; по мере перехода во внешние, более холодные слои частота излучения уменьшается. Скорость диффузии определяется средней величиной пробега кванта, к-рая зависит от прозрачности звёздного вещества, характеризуемой коэфф. поглощения. Осн. механизмами поглощения в 3. являются фотоэлектрич. поглощение и рассеяние свободными электронами.

Лучистая теплопроводность является осн. видом переноса энергии для большинства 3. Однако в нек-рых частях 3., а в 3. с малой массой - почти во всём объёме, существенную роль играет конвективный перенос энергии, т. е. перенос тепла массами газа, поднимающимися и спускающимися под влиянием различия темп-ры. Конвективный перенос, если он действует, гораздо эффективнее лучистого, но конвекция возникает только там, где водород или гелий ионизованы частично: в этом случае энергия их рекомбинации поддерживает движение газовых масс. У Солнца зона конвекции занимает слой от поверхности до глубины, равной ок. 0,1 его радиуса: ниже этого слоя водород и гелий ионизованы уже полностью. У холодных 3. полная ионизация наступает на большей глубине, так что конвективная зона у них толще и охватывает большую часть объёма. Наоборот, у горячих 3. водород и гелий полностью ионизованы, начиная почти от самой поверхности, поэтому у них нет внешней конвективной зоны. Однако они имеют конвективное ядро, где движения поддерживаются теплом, выделяющимся при ядерных реакциях.

Звёзды-гиганты и сверхгиганты устроены иначе, чем 3. гл. последовательности. Маленькое плотное ядро их (1% радиуса) содержит 20-30% массы, а остальная часть представляет собой протяжённую разреженную сболочку, простирающуюся на расстояния, составляющие десятки и сотни солнечных радиусов. Темп-ры ядер достигают 100 млн. градусов и более. Белые карлики по существу представляют собой те же ядра гигантов, но лишённые оболочки и остывшие до 8-10 тыс. градусов. Плотный газ ядер и белых карликов обладает особыми свойствами, отличными от свойств идеального газа. В нём энергия передаётся не излучением, а электронной теплопроводностью, как в металлах. Давление такого газа зависит не от темп-ры, а только от плотности, поэтому равновесие сохраняется даже при остывании 3., не имеющей источников энергии.

Химич. состав вещества недр 3. на ранних стадиях их развития сходен с химич. составом звёздных атмосфер (см. Атмосферы звёзд), к-рый определяется из спектроскопич. наблюдений (диффузионное разделение может произойти лишь за время, значительно превосходящее время жизни 3.). С течением времени ядерные реакции изменяют химич. состав звёздных недр и внутр. строение 3. меняется.



Источники звёздной энергии и эволюция звёзд. Осн. источником энергии 3. являются термоядерные реакции, при к-рых из лёгких ядер образуются более тяжёлые; чаще всего это - превращение водорода в гелий. В 3. с массой, меньшей двух солнечных, оно происходит гл. обр. путём соединения двух протонов в ядро дейтерия (лишний заряд уносится рождающимся позитроном), затем превращением дейтерия в изотоп Не3 путём захвата протона и, наконец, превращением двух ядер Не3 в Не4 и два протона. В более массивных 3. преобладает углеродно-азотная циклич. реакция: углерод захватывает последовательно 4 протона, выделяя попутно два позитрона, превращается сначала в азот, затем распадается на гелий и углерод. Окончательным результатом обеих реакций является синтез ядра гелия из четырёх ядер водорода с выделением энергии; ядра азота и углерода в углеродно-азотной реакции играют лишь роль катализатора. Для сближения ядер на такое расстояние, когда может произойти захват, нужно преодолеть электростатич. отталкивание, поэтому реакции могут идти только при темп-рах, превышающих 107 градусов. Такие темп-ры встречаются в самых центр. частях 3. В 3. малых масс, где темп-ра в центре недостаточна для термоядерных реакций, источником энергии служит гравитационное сжатие 3.

Зная процессы передачи и выделения тепла, можно решить систему уравнений механич. и теплового равновесия и рассчитать внутр. строение 3., имеющей данную массу. При этом вычисляются также радиус и светимость 3., к-рые являются функцией массы. Полученные таким путём теоретич. зависимости могут быть сопоставлены с диаграммами "масса - светимость" и "масса - радиус", составленными по наблюдениям 3. Для 3. гл. последовательности результаты наблюдений согласуются с теорией. 3. др. последовательностей теоретич. зависимостям не удовлетворяют. Причина появления др. последовательностей заключается в изменении химич. состава недр 3. в процессе эволюции. Превращение водорода в гелий увеличивает молекулярный вес газа, вследствие чего ядро сжимается, темп-pa его растёт, а соседний с ядром газ нормального состава расширяется. 3. становится гигантом, причём на диаграмме Герцшпрунга - Ресселла она перемещается по одной из линий, наз. эволюционными треками. Иногда треки имеют сложный вид; перемещаясь по ним, 3. неск. раз переходит от одного края диаграммы к другому и обратно. После расширения, а затем рассеяния оболочки 3. становится белым карликом.

У массивных 3. ядро в конце эволюции неустойчиво, радиус его уменьшается приблизительно до 10 км, и 3. превращается в нейтронную (состоит из нейтронов, а не из ядер и электронов, как обычные 3.). Нейтронные 3. имеют сильное магнитное поле и быстро вращаются. Это приводит к наблюдаемым всплескам радиоизлучения, а иногда к всплескам также и оптич. и рентгеновского излучений. Такие объекты наз. пульсарами. При ещё больших массах происходит коллапс - неограниченное падение вещества к центру со скоростью, близкой к скорости света. Часть гравитационной энергии сжатия производит выброс оболочки со скоростью до 7000 км/сек. При этом 3. превращается в сверхновую 3., её излучение увеличивается до неск. млрд. светимостей Солнца, а затем постепенно, в течение ряда месяцев угасает. О происхождении и эволюции 3. см. также в ст. Космогония.

Двойные звёзды. Большая часть 3. входит в состав двойных или кратных звёздных систем (см. Двойные звёзды). Если компоненты двойных 3. расположены достаточно далеко друг от друга, они видны отдельно. Это т. н. визуально-двойные 3. Иногда один, более слабый, компонент не виден, и двойственность обнаруживается по непрямолинейному движению более яркой 3. Чаще же всего двойные 3. распознаются по периодич. расщеплению линий в спектре (спектрально-двойные 3.) или по характерным изменениям блеска (затменно-двойные 3.). Большая часть двойных 3. образует тесные пары. На эволюцию компонентов таких 3. существенное влияние оказывают взаимные приливные возмущения. Если один из компонентов 3. вздувается в процессе эволюции, то при нек-рых условиях из точки её поверхности, обращённой к др. компоненту, начинается истечение газа. Газ образует потоки вокруг второго компонента и частично попадает на него. В результате первый компонент может потерять большую часть массы и превратиться в субгиганта или даже в белого, карлика. Второй же компонент приобретает часть потерянной массы и соответственно увеличивает светимость. Поскольку эта масса может включать газ не только из атмосферы, но и из глубоких слоев, близких к ядру первого компонента, в двойной 3. могут наблюдаться аномалии химич. состава. Однако эти аномалии касаются только лёгких элементов, т. к. тяжёлые элементы в гигантах не образуются. Они появляются при взрывах сверхновых 3., когда выделяется много нейтронов, которые захватываются ядрами атомов и увеличивают их вес.

Пекулярные и магнитные звёзды. Аномалии химич. состава, причём различные в разных местах поверхности 3., особенно часто наблюдаются у т. н. магнитных звёзд. Эти 3., спектральный класс к-рых близок к АО, имеют на поверхности магнитные поля с очень высокой напряжённостью (до 10 000 гаусс и больше). Напряжённость поля периодически меняется со средним периодом от 4 до 9 сут, причём часто изменяется и знак напряжённости. С этим же периодом обычно меняется и характер спектра, как если бы менялся химич. состав 3. Такие изменения могут быть объяснены вращением 3., имеющей два или неск, магнитных полюсов, не совпадающих с полюсом вращения. Изменения химич. состава при этом объясняются тем, что на магнитном полюсе сосредоточено больше одних элементов, а на магнитном экваторе - других. У разных пекулярных (особых) 3., характеризующихся наиболее существенными особенностями химич. состава, аномалии могут быть разными; чаще всего наблюдается большой избыток отд. элементов типа Si, Mg, Cr, Eu, Мп и нек-рых др. и недостаток Не.

Появление этих аномалий обусловлено, по-видимому, тем, что сильное магнитное поле подавляет конвекцию. При отсутствии перемешивания происходит медленная диффузия элементов под действием силы тяжести и давления радиации. Одни элементы опускаются вниз, другие поднимаются вверх, в результате чего на поверхности наблюдается недостаток первых и избыток вторых. Магнитные 3. вращаются медленнее, чем нормальные 3. того же класса. Это является результатом того, что магнитное поле тормозило вращение сжимающегося сгустка вещества, из к-рого впоследствии сформировалась 3.

Кроме обычных пекулярных 3. имеются т. н. 3. с металлич. линиями поздних спектральных подклассов А. У них также есть магнитное поле, но более слабое, и аномалии химич. состава не так велики. Природа таких 3. пока не изучена.

Нек-рые типы аномалий, напр. обилие Li, связаны с дроблением более тяжёлых ядер космич. лучами, образующимися на самой 3. в результате электромагнитных явлений, сходных с хромо-сферными вспышками. Такие аномалии наблюдаются, напр., у ещё сжимающихся 3. типа Т Тельца, с сильной конвекцией.

Аномалии др. вида, наблюдаемые, напр., у гигантов спектрального класса S, обусловлены тем, что глубокая поверхностная конвективная зона смыкается с центральной конвективной зоной, что вызывается усилением ядерных реакций на определённом этапе эволюции 3. В результате вещество всей 3. перемешивается, и наружу выносятся элементы, синтезированные в её центральных областях.

Переменные звёзды. Блеск многих 3. непостоянен и изменяется в соответствии с тем или иным законом; такие 3. наз. переменными звёздами. 3., у к-рых изменения блеска связаны с физич. процессами, происходящими в них самих, представляют собой физич. переменные 3. (в отличие от оптич. переменных 3., к числу к-рых относятся затменно-двойные 3.). Периодич. и полупериодич. переменность связана обычно с пульсациями 3., а иногда с крупномасштабной конвекцией. Вообще говоря, 3. как системам, находящимся в устойчивом равновесии, свойственны пульсации с собственными периодами. Колебания могут возникнуть в процессе перестройки структуры 3., связанной с эволюционными изменениями.

Однако, чтобы они не затухали, должен существовать механизм, поддерживающий или усиливающий их: в период макс. сжатия 3. необходимо получить тепловую энергию, к-рая уйдёт наружу в период расширения. Согласно совр. теориям, пульсации у многих типов переменных 3. (цефеиды, переменные типа RR Лиры и др.) объясняются тем, что при сжатии 3. увеличивается коэфф. поглощения; это задерживает общий поток излучения, и газ получает дополнительную энергию. При расширении поглощение уменьшается, и энергия выходит наружу. Неоднородное строение 3., наличие в них нескольких слоев с различными свойствами нарушает регулярную картину, делает изменения параметров 3. отличными от правильной синусоиды. Осн. стоячая волна колебания часто находится в глубине 3., а на поверхность выходят порождаемые ею бегущие волны, к-рые влияют на фазы изменений блеска, скорости и др. параметров .

Нек-рые виды переменных 3. испытывают вспышки, при к-рых блеск возрастает на 10-15 звёздных величин (т. н. новые 3.), на 7-8 величин (повторные новые 3.) или на 3-4 величины (новоподобные). Такие вспышки связаны с внезапным расширением фотосферы с большими скоростями (до 1000- 2000 км/сек у новых 3.), что приводит к выбросу оболочки с массой ок. 10-5 -10-4 масс Солнца. После вспышки блеск начинает уменьшаться с характерным временем 50-100 сут. В это время продолжается истечение газов с поверхности со скоростью в неск. тыс. км/сек. Все эти 3. оказываются тесными двойными, и их вспышки, несомненно, связаны с взаимодействием компонентов системы, один из к-рых или оба обычно являются горячими звёздами-карликами. На структуру оболочек, выброшенных новыми 3., по-видимому, существенное влияние оказывает сильное магнитное поле 3. Быстрая неправильная переменность 3. типа Т Тельца, UV Кита и нек-рых др. типов молодых сжимающихся 3. связана с мощными конвективными движениями в этих 3., выносящими на поверхность горячий газ. К переменным 3. можно отнести и уже упоминавшиеся сверхновые 3. В Галактике известно св. 30 000 переменных 3.

Работы по изучению 3. в СССР ведутся на Крымской астрофизич. обсерватории АН СССР, Главной астрономич. обсерватории АН СССР, в Гос. астрономич. ин-те им. П. К. Штернберга, в Астрономич. совете АН СССР и др. астрономич. учреждениях. Статьи по этим вопросам печатаются в "Астрономическом журнале", в журнале "Астрофизика" и в изданиях обсерваторий. За рубежом исследования 3. ведутся в США, Великобритании, Австралии и мн. др. странах. В зарубежной лит-ре основным является "Astrophysical Journal" (США) и ряд др. изданий США, Великобритании и др. стран.

Лит.: Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959; Мустель Э. Р., Звездные атмосферы, М., 1960; Шварцшильд М., Строение и эволюция звезд, пер. с англ., М., 1961; Горбацкий В. Г., Минин И. Н., Нестационарные звезды, М., 1963; Звездные атмосферы, под ред. Дж. Л. Гринстенна, пер. с англ., М., 1963; Каплан С. А., Физика звезд, 2 изд., М., 1970; Пульсирующие звезды, М., 1970; Мартынов Д. Я., Курс общей астрофизики, 2 изд., М., 1971. С. Б. Пикелънер.

ЗВЕНИГОВО, посёлок гор. типа, центр Звениговского р-на Map. АССР. Пристань на лев. берегу Волги, в 35 км к Ю.-З. от ж.-д. станции Шелангер (на линии Йошкар-Ола - Зеленодольск). Судостроительно-судорем. з-д, леспромхоз, лесокомбинат.



ЗВЕНИГОРОД, город в Московской обл. РСФСР. Расположен на р. Москве, в 3 км от ж.-д. станции 3.- конечный пункт ветки (16 км) от Голицыне, в 53 км к 3. от Москвы. Впервые упоминается в духовной грамоте Ивана Калиты (1339). Однако материалы археол. раскопок 1943-45 и 1954-57, проводившихся на "Городке"-кремле 3.,- свидетельствуют, что город существовал ещё в домонгольское время (открыты жилой комплекс 12 в. и мастерская медника 13 в.; найдены различные бытовые предметы, украшения и керамика 12-13 вв.). Расцвет 3. относится к 1389-1434. В 14-16 вв. был важным сторожевым пунктом на зап. подступах к Москве. В этот период 3. обнесён мощными оборонительными валами и дубовыми стенами, выстроен Успенский собор на "Городке" (1399; белокам. одноглавый 4-столпный 3-апсидный храм; на фасадах - широкий резной пояс, порталы с килевидными архивольтами, характерные для ранней моск. архитектуры; внутри - фрагменты фресок Андрея Рублёва).

В 1398-99 при впадении р. Сторожки в р. Москву был осн. Саввино-Сторожевский монастырь, ансамбль к-рого включает древний Рождественский собор (1405; расширен в 17 в., внутри - росписи 15- 17 вв.) и кирпичные постройки 17 в.: стены и башни (взамен деревянных 14 в.; 1650-54, строились под наблюдением Н. Боборыкина и А. Шахова), трапезную (1652-54) с Преображенской церковью (1693) и колокольней (сер. 17в.), Троицкую церковь (1652), дворцы царя и царицы (оба - 1652-54), кельи; в вост. стене монастыря - Красные ворота (18 в., раннее барокко). С 1781-уездный город.

В 3.- произ-во мебели, школьно-канцелярских принадлежностей, игрушек, спорт. инвентаря, галантерейных и швейных изделий. Финанс. техникум. В пределах монастыря - историко-архитектурный музей. Один из самых живописных городов Подмосковья. Санаторий, дома отдыха, туристич. база. В 1887 в 3. работал врачом А. П. Чехов. В 3 км от 3. в деревне Дютьково - народный музей С. И. Танеева, И. И. Левитана и А. П. Чехова.

Лит.: Тихомиров Н. Я., Звенигород, М., 1948; Рыбаков Б. А., Раскопки в Звенигороде, в сб.: Материалы и исследования по археологии СССР, № 12, М.- Л., 1949; Боровкова С., Звенигород и окрестности, 2 изд., [М.], 1970.

ЗВЕНИГОРОД ГАЛИЦКИЙ, название двух городов в Зап. Руси. 1) 3. Г. (Червенский) на р. Белка (Львовская обл. УССР). В кон. 11 в.- центр удельного княжества Галицкой земли, с сер. 12 в. входил в состав Теребовльского, а с 1-й пол. 13 в.- Галицко-Волынского княжеств. В сер. 13 в. пришёл в упадок, с 15 в. стал селом, ныне - с. Звенигород, Пустомытовского р-на. 2) 3. Г. на лев. берегу Днестра, между устьями pp. Ceрет и Збруч (Тернопольская обл. УССР). В 12 в. был центром небольшого удельного княжества. Разрушен монголо-татарами в сер. 13 в.

Лит.: Icтоpiя мiст i сiл Украiнськоi РСР. Львiвська область, К., 1968, с. 584-92.

ЗВЕНИГОРОД КИЕВСКИЙ, др. рус. город-крепость, прикрывавший Киев с Ю.-В. Точное местонахождение 3. К. неизвестно. Упоминается в Ипатьевской летописи в связи с междоусобной княжеской борьбой под годами 1097, 1150, 1151 и по поводу битвы с половцами в 1234. 3. К. перестал существовать после монголо-татарского нашествия в сер. 13 в.

ЗВЕНИГОРОДКА, город, центр Звенигородского р-на Черкасской обл. УССР, на р. Гнилой Тикич (басс. Юж. Буга), в 12 км от ж.-д. ст. Звенигородка (на линии Цветково - Христиновка). 20,4 тыс. жит. (1970). Чугунолитейный, кирпичный, мукомольный, маслосыродельный з-ды, плодокомбинат. С.-х. техникум.

Во время Великой Отечеств. войны 1941-45 28 янв. 1944 в ходе Корсунь-Шевченковской операции в 3. войска 6-й танк. армии 1-го Укр. фронта соединились с войсками 5-й Гвард. танк. армии 2-го Укр. фронта, окружив крупную группировку нем.-фаш. войск.



ЗBEHО (воен.), тактическое и огневое подразделение (3-4 самолёта) различных родов авиации. Неск. 3. составляют эскадрилью. Боевые задачи 3. выполняет в составе эскадрильи или самостоятельно.

ЗВЕНО в сельском хозяйстве СССР, небольшой по численности первичный трудовой коллектив в составе производств. бригады, отделения, производств. участка, фермы, цеха, к-рый на основе кооперации и разделения труда выполняет своими силами на закреплённом участке осн. виды работ. 3. впервые возникли в нач. 1930-х гг. при возделывании трудоёмких культур (сах. свёкла, овощи и др.). Особую известность в те годы получили свекловичные звенья пятисотниц, к-рые с гектара посева получали 500 и более центнеров сахарной свёклы. Зачинателями этого движения были знатные свекловичницы Мария Демченко, Марина Гнатенко и др. За таким 3. в количестве 10-12 чел. закреплялось 5-6 га посевов сахарной свёклы. По мере внедрения в колхозы и совхозы более совершенной техники и рациональной технологии качественно изменялся состав бригад, отделений, а вместе с ними и звеньев. 3. способствует ликвидации обезлички, повышает ответственность и материальную заинтересованность членов 3. в улучшении результатов произ-ва.

Состав 3. и звеньевых утверждает правление колхоза (дирекция совхоза) по представлению бригадира (управляющего, зав. производств. участка, фермы, цеха). Звеньевой работает наряду с др. членами 3. и, кроме того, организует его работу: расставляет людей, следит за выполнением распорядка дня, норм выработки, качеством работ. За руководство 3. он получает дополнит. оплату в установленных размерах. Звеньевой непосредственно подчинён бригадиру (управляющему и т. д.). 3. строит свою работу на основе производств. задания и технологич. карты.

В растениеводстве преобладают механизированные 3., укомплектованные преим. механизаторами. Деятельность механизированных 3. строится на хозрасчётных началах: им отводится земля, выделяется необходимая техника и составляются хозрасчётные производств. задания. Оплата труда членов 3. производится в соответствии с количеством и качеством произведённой продукции.

По своему профилю механизированные 3. подразделяются на два осн. типа: 1) 3., возделывающие одну, реже две культуры с несовпадающими сроками работ и относительно однородной технологией, на участках земли, выделяемой на время возделывания этих культур. На практике такие 3. обычно наз. специализированными (свекловодческие, кукурузоводческие, картофелеводческие, льноводческие, овощеводческие).

2) 3., возделывающие набор полевых культур на закреплённых за ними на длительный срок полях, составляющих полный севооборот или часть его. Такие 3. часто наз. комплексными, универсальными или укрупнёнными.

В зависимости от конкретных условий в колхозах и совхозах создаются и успешно работают различные по размерам площади, количеству механизаторов и набору техники механизированные 3., возделывающие одну или несколько с.-х. культур. И. И. Емельянов.

"ЗBEHО", политич. группировка в Болгарии в 1927-44 и политич. партия в 1944-49. "3." возникло в 1927 как политич. кружок, объединявший оппозиционно настроенных к царской династии офицеров и бурж. интеллигентов. В мае 1934 с помощью т. н. Военной лиги "3." произвело гос. переворот. Созданное н результате переворота пр-во К. Георгиева установило в стране режим воен.-фаш. диктатуры. Однако, учитывая возросший междунар. авторитет СССР и традиц. симпатии болг. народа к России, пр-во Георгиева в условиях усилившейся угрозы агрессии со стороны Германии вынуждено было восстановить в июле 1934 дипломатич. отношения с СССР. Включившись в борьбу с гитлеризмом, "3." летом 1942 достигло соглашения с Болг. рабочей партией и Болг. земледельч. нар. союзом на базе борьбы за демократич. платформу Отечественного фронта (ОФ) Болгарии. 9 сент. 1944 "3." приняло участие в свержении монархо-фаш. строя. К. Георгиев, лидер "3.", стал премьер-министром первого нар.-демократич. пр-ва. 1 окт. 1944 "3." было преобразовано в политич. партию - Нар. союз "Звено", члены к-рой затем в соответствии с решением своей Конференции (февр. 1949) влились в ОФ.

Л. Б. Валев.



ЗВЕНОРАЗБОРОЧНАЯ МАШИНА. предназначена для разборки старых, снятых с ж.-д. пути звеньев рельсо-шпальной решётки. 3. м. используют для разборки звеньев с деревянными шпалами. Основные элементы 3. м.: расшивочный станок, на котором шпалы отделяются от рельсов и подкладки - от шпал. Существуют 3. м., передвигающиеся по рельсам разбираемого звена от шпалы к шпале, отрывая каждую из них, и 3. м., по к-рым перемещается разбираемое звено. Последние более универсальны, производительны, имеют ав-томатич. управление. В приёмнике пакетов звеньев такой машины звено подвешивается на направляющие ролики, подаётся к щёточному барабану для очистки шпал от балласта и направляется в расшивочный станок. Подкладки с костылями поступают в бункеры, шпалы - на цепной конвейер для сортировки, а рельсы после выхода из станка лебёдками укладываются в штабеля. Производительность 3. м. 0,2-0,3 км путевой решётки в час.



ЗВЕНОСБОРОЧНАЯ МАШИНА, предназначена для механизированной поточной сборки звеньев рельсо-шпальной решётки ж.-д. пути. На 3. м. собираются звенья, длина которых равна стандартной длине рельсов (в СССР 12,5 и 25 м). 3. м. состоит из шпа