загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

лнитрофоса и др. Для борьбы со взрослыми насекомыми помещение опрыскивают аэрозолями с хлорофосом и др. инсектицидами, применяют ядовитые приманки, клейкую бумагу и т. п.

[910-8.jpg]

Жигалка обыкновенная (самец).



ЖИГАЛОВО, посёлок городского типа, центр Жигаловского р-на Иркутской обл. РСФСР. Пристань в верх. течении р. Лены. Автодорогами соединён с Иркутском (400 км) и ближайшей ж.-д. станцией Залари (240 км). Грузовое и пассажирское судоходство вниз по Лене. Судоверфь.



ЖИГАНОВ Назиб Гаязович [р. 2(15). 1.1911, Уральск], советский композитор, нар. арт. СССР (1957). Чл. КПСС с 1944. В 1938 окончил Московскую консерваторию по классу композиции Г. И. Литинского. С 1945 - ректор и преподаватель, с 1953 профессор Казанской консерватории. Произв. Ж. посвящены гл. обр. историко-героич. тематике; ему принадлежат первые тат. оперы на совр. темы. Автор 8 опер, 3 балетов, 3 симфоний и др. Среди лучших произв. - оперы "Качкын" ("Беглец", пост. 1939), "Алтынчеч" ("Золотоволосая", 1941; Гос. пр. СССР, 1948), "Джалиль" (1957); сюита на тат. темы (1949; Гос. пр. СССР, 1950), поэма "Нафиса" (1952), 2-я симфония "Сабантуй" (1968; Гос. пр. СССР, 1970). Деп. Верх. Совета СССР 7-го созыва. Награждён орденом Ленина, 3 др. орденами, а также медалями.

Лит.: Гиршман Я., Назиб Жиганов, М., 1957.



ЖИГАРЕВ Павел Фёдорович [6(19).11. 1900, д. Бриково, ныне Калининской обл., - 2.10.1963, Москва], Главный маршал авиации (1955). Чл. КПСС с 1920. Род. в семье крестьянина-бедняка. В Сов. Армии с 1919. Окончил кав. школу (1922), воен. школу лётчиков (1927), Воен.-возд. академию им. Н. Е. Жуковского (1932). Командовал эскадрильей, авиабригадой, был нач. управления боевой подготовки штаба ВВС Красной Армии, командующим ВВС 2-й Отд. Краснознамённой армии. С дек. 1940 1-й зам., а с апр. 1941 - командующий ВВС Красной Армии, в апр. 1942-1945 командовал ВВС Дальневост. фронта. Во время войны с Японией, в авг. 1945 командующий 10-й возд. армией. В 1946-48 1-й зам. командующего ВВС, в 1948-49 командующий дальней авиацией и зам. главкома ВВС. В сент. 1949 - янв. 1957 главнокомандующий ВВС и 1-й зам. министра обороны СССР. В 1957-59 нач. Гл. управления ГВФ. С нояб. 1959 нач. Воен. командной академии ПВО. Деп. Верх. Совета СССР 3-5-го созывов. Кандидат в члены ЦК КПСС (1952-61). Награждён 2 орденами Ленина, 3 орденами Красного Знамени, орденами Кутузова 1-й степени и Красной Звезды и медалями.


ЖИГУЛЁВСК, город в Куйбышевской обл. РСФСР. Расположен на правом берегу Волги, в сев. части Самарской Луки. Ж.-д. станция в 75 км к С.-В. от г. Сызрань. 53 тыс. жит. (1971). Вырос на месте сёл Отважное и Моркваши в связи с разработкой нефт. месторождений и строительством Волжской ГЭС им. В. И. Ленина. Преобразован из посёлка в город в 1952. Комбинат стройматериалов, з-ды: деревообр., сборного железобетона, известковый, ф-ка художеств. изделий, предприятия пищ. пром-сти. Мед. уч-ще.

ЖИГУЛИ, Жегули, возвышенность на прав. берегу Волги, огибаемая излучиной реки (т. н. Самарская Лука), в Куйбышевской обл. РСФСР. Выс. до 375 м. Дл. ок. 75 км. Представляет собой южное приподнятое крыло сброса, протягивающегося в широтном направлении. Склон возвышенности, обращённый к Волге, сильно изрезан глубокими оврагами и балками. Сложены гл. обр. известняками и доломитами. Месторождения нефти, входящие в Волго-Уральскую нефтегазоносную область, а также строит. известняков, асфальта. На склонах, обращённых к С., - широколиств. и сосновые леса, к Ю. - лесостепная растительность. В сев. части Самарской Луки, в р-не Ж., построена Волжская ГЭС им. В. И. Ленина.

В народных сказаниях и песнях Ж. связаны с именем вождя крестьянского восстания 17 в. Степана Разина. Благодаря своей живописности Ж. привлекают много туристов.

"ЖИГУЛИ", название выпускаемого Волжским автомобильным з-дом (г. Тольятти Куйбышевской обл.) легкового автомобиля с двигателем малого рабочего объёма цилиндров. Произ-во (модель ВАЗ-2101) начато в 1970. Вместимость при небольшой собств. массе (890кг)-5 чел. Кузов типа седан, цельнометаллический, несущий. Двигатель карбюраторный 4-тактный 4-цилиндровый мощностью 45,6 квт (62 л. с.). Ведущие колёса - задние. Макс. скорость при полной нагрузке 140 км/ч. Расход топлива 8-10 л на 100 км. Автомобиль рассчитан на эксплуатацию при темп-ре окружающего воздуха от +50 до -40°С. Системы двигателя позволяют запускать его без подогрева при- 25°С. Трудоёмкость обслуживания автомобиля невелика: конструкции подвижных соединений (напр., подвесок) не нуждаются в спец. уходе, а жидкость для охлаждения двигателя не требует замены в течение 2 лет. Для отделки салона кузова применены высококачеств. синтетич. материалы. Эффективная система вентиляции и отопления создаёт достаточный обмен воздуха и поддерживает темп-ру в салоне до 25 °С (при -25 °С снаружи). Гидравлич. телескопич. амортизаторы подвесок колёс значительно повышают плавность хода.

К элементам активной безопасности автомобиля относятся стабилизатор поперечной устойчивости, уменьшающий крен кузова на поворотах, раздельный гидропривод тормозов (на передние и задние колёса), регулятор давления в системе гидропривода в зависимости от нагрузки на задний мост; к элементам пассивной безопасности - ремни безопасности, мягкая обивка крыши салона, козырьков, панели приборов, подлокотников, "утопленные" ручки дверей и др. Часть автомобилей оборудуется замками с противоугонным устройством, защитными пластинами картера двигателя и радиоприёмником с выдвижной антенной.

В 1972 начат выпуск усовершенствованной модели - ВАЗ 2103 с двигателем мощностью 55,1 квт (75 л. с.).

В. С. Соловьёв.



ЖИГУРИ, посёлок гор. типа в Балвском р-не Латв. ССР. Ж.-д. станция на линии Рига - Пыталово. Леспромхоз (лесопиление, произ-во тарных досок и др.).

ЖИД (Gide) Андре Поль Гийом (22. 11.1869, Париж, - 19.2.1951, там же), французский писатель. Род. в семье юриста. Первые кн. - "Стихотворения Андре Вальтера" (1887), "Тетради Андре Вальтера" (1891), "Трактат о Нарциссе" (1891), "Путешествие Уриана" (1893) и др. - написаны согласно символистской поэтике. Ж. противопоставляет ходячей буржуазной морали и цивилизации ницшеанскую сильную личность, прославляет анархич. бунтарство, часто принимающее формы аморализма: "Яства земные" (1897), "Имморалист" (1902), "Тесные врата" (1909). В "Подземельях Ватикана" (1914) гротескно описанному бурж. миру оказывают противодействие герои-индивидуалисты. В романе "Фальшивомонетчики" (1925) изображение упадка бурж. общества перерастает в апологию аморальности. Композиция романа усложнена; его структура обсуждается самими действующими лицами. Критика капитализма заострена в кн. "Путешествие в Конго" (1927) и "Возвращение с озера Чад" (1928). В сер. 30 х гг. Ж. на время примкнул к антифаш. лит. движению; однако антибуржуазность Ж. оказалась поверхностной, асоциальный индивидуализм всегда брал в нём верх. В 1936 Ж. после короткой поездки в СССР написал антисов. памфлет; в годы 2-й мировой войны эмигрировал в Тунис, но не выступал в печати против фашизма. Нобелевская пр. (1947).

Соч.: CEuvres completes, t. 1 -13. [P., 1932-39]: Journal, [t. 1-2], P., 1940-50; в рус. пер.- Собр. соч., т. 1 - 4, Л., 1935 - 1936.

Лит.: Рыкова Н., Современная французская литература, Л., 1939; История французской литературы, т. 3-4, М., 19Г9- 1963; А1bеrеs R.-M., L'Odyssee d'A. Gide, P., 1951; Thierry J. J.. Gide, [P.], 1962; Martin C., A. Gide par lui-meme, P., 1967 (имеется библ.); Painter G. D., A. Gide, L., [1968]; Navi11e A., Bibliographie des ecrits d'A. Gide, P.. 1949 - 1950. А. Д. Михайлов.



ЖИД (Gide) Шарль (29.6.1847, г. Изес, Франция, - 13.3.1932, Париж), французский экономист, историк политич. экономии, теоретик франц. кооперативного движения. Окончил юридич. ф-т Парижского ун-та (1874). Проф. политэкономии Парижского ун-та (1898-1920). В 1886 вошёл в "Общество народной экономии", созданное Э. де Буавом в г. Ниме и послужившее в дальнейшем основой "Нимской школы" кооператоров. Примыкал к субъективной школе бурж. политэкономии. Проповедовал мелкобурж. "кооперативный социализм", ошибочно полагая, что капиталистич. произ-во может быть реформировано путём широкого развития потребительских кооперативов. Утопич. реакционный характер этого учения разоблачён В. И. Лениным.

Соч.: Histoire des doctrines economiques. 7 ed., v. 1 - 2, P., 1947 (совм. с Ch. Rist); в рус. пер.- Общества потребителей, 2 изд., ч. 1 - 2, М., 1917; О кооперации..., М., 1917; История экономических учений, 2 изд., М., 1918.

Лит: Ленин В. И., Полн. собр. соч., 5 изд., т. 9, с. 341; там же, т. 19, с. 345 - 354; там же, т. 45, с. 369 - 377.



ЖИДАЧОВ, город (с 1939), центр Жидачовского р-на Львовской обл. УССР. Ж.-д. станция (на линии Стрый - Ходоров). Узел автомоб. дорог. Картоннобумажный комбинат; 2 кирпичных, сыродельный з-ды, ф-ка культурно-бытовых изделий.



ЖИДКИЕ ДИЭЛЕКТРИКИ, жидкости, удельное электрич. сопротивление к-рых превышает 1010 ом*см. В электрич. поле Ж. д., как и твёрдые, характеризуются поляризацией и диэлектрич. потерями; в сильных полях - имеет место пробой (см. Диэлектрики). Электропроводность Ж. д. обусловлена ионами, образованными вследствие диссоциации собственных и примесных молекул жидкости. Пробой Ж. д. в сильном электрич. поле в основном связан с загрязнениями, к-рые содержит жидкость.

Ж. д. имеют большое значение в электротехнике и в лабораторной практике. Они обладают более высокой электрич. прочностью, диэлектрич. проницаемостью е и удельной теплопроводностью по сравнению с воздухом или др. газами при давлении, близком к атмосферному. Поэтому при удалении воздуха из пор в волокнистой или иной пористой изоляции и заполнении их Ж. д. допустимое рабочее напряжение электрич. устройств повышается. Аналогичный эффект достигается при заливке Ж. д. корпусов трансформаторов, конденсаторов, блоков радиоаппаратуры, при пропитке Ж. д. бумажной изоляции конденсаторов или силовых кабелей высокого напряжения и т. п. При пропитке Ж. д. бумажной изоляции конденсаторов удаётся значительно повысить их ёмкость.

Из Ж. д. наиболее широко применяются электроизоляц. минеральные (нефтяные) масла. По хим. составу - это смеси различных углеводородов с е =2,2-2,4 и с малым углом б диэлектрических потерь (после хорошей очистки и при нормальной темп-ре tg б < 0,001).

Хлорированные углеводороды с несимметричным строением молекул (в СССР - совол и совтол) являются полярными Ж. д. с повышенными значениями е (3-6) и характерными зависимостями е и tg б от темп-ры и частоты. Широко применяются также синтетич. Ж. д. - кремнийорганич. и фторорганич. жидкости (подробнее см. в ст. Электроизоляционные материалы).

Лит.: Сканави Г. И., Физика диэлектриков. (Область слабых полей), М.- Л., 1949; его же, Физика диэлектриков. (Область сильных полей), М., 1958; Браун В., Диэлектрики, пер. с англ., М., 1961; Балыгин И. Е., Электрическая прочность жидких диэлектриков, М.- Л., 1964. А. Н. Губкин.



ЖИДКИЕ КРИСТАЛЛЫ, жидкокристаллическое состояние, мезоморфное состояние, состояние вещества, в к-ром оно обладает свойствами жидкости (текучестью) и нек-рыми свойствами твёрдыхкристаллов (анизотропией свойств). Ж. к. образуют вещества, молекулы к-рых имеют форму палочек или вытянутых пластинок. Различают термотропные и лиотропные Ж. к. Первые - индивидуальные вещества, к-рые существуют в мезоморфном состоянии в определённом температурном интервале, ниже к-poro вещество является твёрдым кристаллом, выше - обычной жидкостью. Примеры:

[910-9.jpg]параазоксианизол (в интервале темп-р 114-135° С), этиловый эфир азоксибензойной кислоты (100-120° С), пропиловый эфир холестерина (102-116° С).
[910-10.jpg]

Лиотропные Ж. к. - растворы нек-рых веществ в определённых растворителях. Примеры: водные растворы мыл, растворы синтетич. полипептидов (поли-у-бензил-L-глутамат) в ряде органич. растворителей (диоксан, дихлорэтан).

Взаимное расположение молекул в Ж. к. является промежуточным между твёрдыми кристаллами, где существует трёхмерный координац. дальний порядок (упорядоченность в расположении центров тяжести молекул) и ориентационный дальний порядок (упорядоченность в ориентации молекул), и аморфными жидкостями, в к-рых дальний порядок полностью отсутствует (см. Дальний порядок и ближний порядок). По степени молекулярной упорядоченности различают нематические и смектические Ж. к. (терминология Ж. Фриделя, G. Friedel). Нематич. Ж. к. (параазоксианизол, растворы синтетич. полипептидов) характеризуются ориентацией продольных осей молекул вдоль нек-рого направления (дальний ориентационный порядок, рис., а). Упорядоченность в ориентации по характеру расположения молекул в жидких кристаллах: а - в нематических жидких кристаллах молекулы расположены параллельно, но их продольные сдвиги беспорядочны; б - в смектических кристаллах молекулы собираются слоями.

. Это обеспечивает свободу поступательных перемещений молекул. Поэтому вязкость вещества в нематич. фазе лишь незначительно отличается от вязкости в аморфно-жидком состоянии.

В смектич. Ж. к. (этиловый эфир азок-(дабензойной к-ты, водные растворы мыл) концы молекул как бы закреплены в плоскостях, перпендикулярных продольным осям молекул (смектич. плоскости, рис., б). Дальний порядок в расположении поперечных осей и центров тяжести молекул также отсутствует. Текучесть обеспечивается взаимным скольжением смектич. плоскостей.

Существуют также Ж. к. холестерич. типа (разновидность нематич. Ж. к.). Такие Ж. к. образуют вещества (напр., пропиловый эфир холестерина), молекулы к-рых имеют форму продолговатых пластинок, расположенных параллельно друг другу. Координационный дальний порядок отсутствует. Текучесть вещества обеспечивается постулат. перемещением и вращением молекул в их плоскости.

Внешнее различие между нематич. и смектнч. Ж. к. легко может быть установлено при наблюдении их однородных слоев в поляризац. микроскопе. Каждому типу Ж. к. соответствуют определённая текстура, причём для нематич. Ж. к. наиболее характерными являются нитеобразные, а для смектических - па-лочкообразные, конусообразные и ступенчатые структуры. Нити в нематич. Ж. к. являются линиями разрыва оптич. непрерывности. Они наз. дисклинациями, и текстура Ж. к. определяется характером расположения молекул вблизи дисклинаций.

Нек-рые термотропные Ж. к. могут находиться в двух мезоморфных состояниях (см. Полиморфизм). При этом структурные переходы всегда осуществляются по схеме: твёрдокристаллич. фаза - смектическая - нсматическая - аморфно-жидкая и являются фазовыми переходами первого рода (с выделением теплоты фазового перехода). Теплота перехода Ж. к. в аморфную жидкость в десятки раз меньше теплоты плавления органич. твёрдых кристаллов.

В Ж. к. имеет место анизотропия упругости, электропроводности, вязкости, магнитная анизотропия, оптич. анизотропия и др. С ростом темп-ры анизотропия свойств Ж. к. уменьшается, что обусловлено уменьшением упорядоченности в расположении молекул. В магнитном поле Ж. к. ориентируются так, чтобы их ось симметрии была параллельна силовым линиям магнитного поля. В электрич. поле ориентация оси симметрии может быть как параллельной, так и перпендикулярной силовым линиям поля.

Холестерич. Ж. к. обладают весьма большой оптической активностью, на два-три порядка превышающей оптич. активность органич. жидкостей и твёрдых кристаллов. Холестерич. Ж. к. резко изменяют окраску при изменении темп-ры среды на десятые доли градуса, а также при изменении состава среды на доли процента.

Лит.: Цветков В. Н., Современные взгляды на природу анизотропно-жидкой фазы, "Уч. зап. Ленинградского пед. ин-та", 1938, т. 10, с. 33; Чистяков И. Г.. Жидкие кристаллы, М., 1966; Grау G. W., Molecular structure and the properties of liquid crystals, L.- N. Y., 1962; Жидкие кристаллы, пер. с франц., "Природа", 1972, № 2; Чистяков И. Г., Вистинь Л. К., Симметрия, структура ц свойства жидких кристаллов, там же. Е. И. Рюмцев.



ЖИДКИЕ МЕТАЛЛЫ, непрозрачные жидкости с характерным блеском, обладающие большой теплопроводностью, электропроводностью н др. особенностями, свойственными твёрдым металлам. Ж. м. являются все расплавленные металлы и сплавы металлов, а также ряд интерметаллических соединений. Нек-рые полуметаллы н полупроводники в жидком состоянии превращаются в типичные металлы: одни - cразу после плавления (Ge, Si, GaSb и др.), другие - при нагревании выше темп-ры плавления (Те - Se, PbTe, PbSe, ZnSb и др.)- Нек-рые неметаллы (Р,С,В) становятся Ж. м. при высоких давлениях. При атм. давлении и комнатной темп-ре в жидком состоянии находится лишь ртуть (темп-pa плавления-38,9 °С).

Ж. м. по таким свойствам, как вязкость, поверхностное натяжение и диффузия, сходны с др. жидкостями, но в то же время резко отличаются от них значительно большей теплопроводностью, электропроводностью, способностью отражать электромагнитные волны, а также меньшей сжимаемостью. По этим особенностям Ж. м. близки к твёрдым металлам.

Электропроводность Ж. м., как и твёрдых металлов, является электронной. Для чистых металлов электропроводность при плавлении уменьшается в 1,5- 3 раза в зависимости от рода металла и при дальнейшем нагревании убывает линейно с темп-рой. Исключение составляют двухвалентные Ж. м. - их электропроводность при повышении темп-ры слегка падает и проходит через минимум. Коэфф. термоэдс (см. Термоэлектрические явления) скачком меняется при плавлении и для Ж. м. является линейной функцией темп-ры (для многих Ж. м. он пропорционален абс. темп-ре). Коэфф. Холла RH (см. Холла эффект) при плавлении меняется; для Ж. м. он отрицателен и может быть вычислен с помощью модели свободных электронов по формуле RH = (ne)-1, где и - электронная плотность (вычисленная по плотности и валентности), е -заряд электрона (из этих общих правил имеются исключения). Электрич. свойства Ж. м. могут быть поняты только на основе строгой квантовомеханич. теории кинетич. электронных процессов в жидкостях, однако разработка такой теории пока только начата.

При плавлении металлов теплопроводность изменяется почти так же как электропроводность. Это справедливо также и для Bi, теплопроводность и электропроводность к-рого при плавлении увеличиваются, а не уменьшаются, как у др. металлов. Свободные электроны переносят большую часть теплового потока; поэтому Ж. м. имеют более высокую теплопроводность, чем жидкие диэлектрики. Нек-рые Ж. м. соединяют значит. теплопроводность с высокой теплоёмкостью. Это позволяет использовать Ж. м. в теплотехнике в качестве теплоносителей. Наиболее подробно изучены одноатомные Ж. м. - натрий и калий. Они обладают достаточно низкими точками плавления и применяются либо отдельно, либо в виде сплавов для отвода теплоты в ядерных реакторах.

Ж. м., так же как и твёрдые металлы, мало сжимаемы (значительно хуже, чем др. жидкости), т. к. для уменьшения объёма в обоих случаях нужно сконцентрировать электроны в меньшем объёме. Поэтому скорость звука в Ж. м. обычно выше, чем в др. жидкостях. Ж. м., как и др. жидкости, неспособны оказывать сопротивление статич. сдвигам, однако ультразвуковые волны очень высокой частоты могут распространяться в Ж. м. как сдвиговые возмущения (см. Жидкость).

Лит.; Ашкрофт Н., Жидкие металлы, "Успехи физических наук", 1970, т. 101, в. 3; Алексеев В. А..Андреев А. А.,

Прохоренко В. Я., Электрические свойства жидких металлов в полупроводников, "Успехи физических наук". 1972, т. 106, в. 3.

ЖИДКИЕ ПОЛУПРОВОДНИКИ, вещества, обладающие в жидком состоянии свойствами полупроводников. Плавление многих твёрдых полупроводников (Si, Ge и др.) сопровождается резким увеличением электропроводности до значений, типичных для металлов. Однако для нек-рых полупроводников характерно уменьшение электропроводности при плавлении (HgSe) или сохранение малой электропроводности (Sb2, Se3 и др.). В жидком состоянии у них сохраняется полупроводниковый характер температурной зависимости электропроводности. Существует ряд Ж. п., к-рые при повышении темп-ры теряют полупроводниковые свойства и приобретают металлические. Напр., сплавы Те - Se в твёрдом состоянии и при плавлении - полупроводники. При дальнейшем нагреве жидких сплавов Те - Se, богатых Те, их электропроводность быстро увеличивается и они становятся металлами. Сплавы же, богатые Se, ведут себя противоположно - их электропроводность уменьшается, а зависимость от темп-ры имеет типично полупроводниковый характер.

Лит.: Фишер И. 3., О подвижности электронов и дырок в жидком полупроводнике, "Докл. АН СССР", 1957, т. 117, № 3; Вопросы теории и исследования полупроводников и процессов полупроводниковой металлургии, М., 1955, с. 12-24; Губанов А. И., Квантово-электронная теория аморфных проводников, М., 1963; Мотт Н., Электроны в неупорядоченных структурах, пер. с англ., М., 1969; Алексеев В. А., Андреев А. А., Прохоренко В. Я., Электрические свойства жидких металлов и жидких полупроводников, "Успехи физических наук", 1972, т. 106, в. 3.

ЖИДКИЕ СМЕСИ, жидкие системы, физико-хим. системы, сохраняющие жидкое состояние при любых соотношениях компонентов и в определённом интервале темп-р. Наиболее хорошо изучены Ж. с. из двух компонентов (двойные, или бинарные, Ж. с.). Взаимная растворимость двух жидкостей при данных темп-ре и давлении может быть: а) неограниченной (напр., вода - этиловый спирт, бензол - толуол); б) ограниченной (напр., при 20° С в воде растворяется 6,48% по массе диэтилового эфира, а в диэтиловом эфире растворяется 1,2% по массе воды); в) практически отсутствовать (напр., вода - ртуть). При повышении (понижении) темп-ры взаимная растворимость двух жидкостей увеличивается и при достижении верхней (соответственно нижней) критич. темп-ры растворения становится неограниченной (см. Критическая температура). О давлении пара двойных Ж. с. см. Коновалова законы и Вревского законы. Изотермы вязкости двойных Ж. с. близки к прямым, если компоненты не ассоциированы, не диссоциированы и не образуют хим. соединений. В случае образования недиссоциированного соединения изотерма вязкости состоит из двух ветвей, пересекающихся в сингулярной точке, абсцисса к-рой отвечает составу соединения (Н. С. Курнаков, С. Ф. Жемчужный, 1912). См. также Двойные системы.

Лит.: Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. -Л., 1947.

С. А. Погодин.



ЖИДКИЕ УДОБРЕНИЯ, минеральные вещества, выпускаемые пром-стью и вносимые в почву в жидком виде.К Ж. у. относятся: азотные удобрения - жидкий безводный аммиак, аммиачная вода (водный аммиак), аммиакаты, концентрированные водные растворы мочевины и аммиачной селитры; сложные удобрения, в состав к-рых входят 2 или 3 осн. питательных элемента растений (азот, фосфор, калий) в различных соотношениях. В СССР азотные Ж. у. стали применять с 1956, в 1969 на поля колхозов и совхозов внесено ок. 3 млн. т Ж. у.; опытно-пром. произ-во н применение сложных Ж. у. начато в 1966. Ж. у. широко используют за рубежом. В США в жидком виде вносят до 50% азотных и ок. 10% сложных удобрений. Азотные Ж. у. применяют в Чехословакии, Дании и др. странах; сложные Ж. у. - во Франции, Великобритании, Канаде.

Азотные Ж. у. содержат азот (аммиачная вода 16,5-20,5%, жидкий безводный аммиак 82,2%, аммиакаты 35-45% ) в основном или только в форме аммиака (NНз), к-рый прочно связывается с частицами почвы и не вымывается дождями и талыми водами. В связи с этим Ж. у. можно применять не только весной, но и в конце лета (под посев озимых) и осенью (под урожай яровых следующего года). В почву азотные Ж. у. вносят прицепными или навесными машинами в агрегате с плугами или культиваторами на определённую глубину (чтобы избежать потерь аммиака): аммиачную воду и аммиакаты - на 10- 12 см, жидкий безводный аммиак - на 15-20 см (в зависимости от механич. состава почвы). Растворы аммиачной селитры и мочевины (до 30-32% ) не содержат аммиака, поэтому их можно вносить в подкормку, разбрызгивая по поверхности почвы. Дозы Ж. у. (по азоту) такие же, как и твёрдых азотных удобрений.

Хранят и перевозят Ж. у., содержащие свободный аммиак, в герметически закрытой таре, безводный аммиак в стальных цистернах, выдерживающих высокое давление его паров-до 2 Мн/м2(20 атм); для аммиачной воды пригодны цистерны из-под тракторного горючего, для аммиакатов нужна тара из нержавеющей стали, алюминия, пластмасс или с антикоррозийным покрытием. Азотные Ж. у. значительно дешевле твёрдых, меньше и затраты труда на их внесение.

Сложные Ж. у. - водные растворы, содержащие до 27% азота, фосфора и калия. При введении стабилизирующих добавок, напр. коллоидной глины, бентонита, предохраняющих раствор от кристаллизации, концентрацию питательных веществ в удобрении можно увеличить до 40%. Сложные Ж. у. не содержат свободного аммиака, поэтому их можно вносить поверхностно под вспашку, культивацию или боронование и в рядки при посеве.

Лит.: Баранов П. А., Кореньков Д. А., Павловский И. В., Жидкие азотные удобрения, М., 1961; Баранов П. А., Жидкие азотные удобрения, М., 1966; Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969. П. А. Баранов.



ЖИДКОЕ КОТЕЛЬНОЕ ТОПЛИВО, топливо, применяемое в стационарных котельных установках, на морских и речных судах и в пром. печах различного назначения. В зависимости от вида сырья Ж. к. т. бывают: нефтяные, получаемые из нефтяных остатков (см. Мазут); сланцевые, состоящие из смол полукоксованиясланцев, и угольные, представляющие собой тяжёлые фракции смол полукоксования углей. Топлива различаются по вязкости, содержанию серы, золы, температуре застывания, теплоте сгорания и др. свойствам. Большинство Ж. к. т. составляют нефтяные топлива, к-рые, в свою очередь, подразделяются по содержанию серы (в % ) на малосернистые (0,5), сернистые (2) и высокосернистые (до 3,5). Низкое содержание серы особенно важно для топлив, используемых в пром. печах (мартены и др.). Преимущество Ж. к. т. перед твёрдыми определяется их высокой теплотой сгорания - 37-42 Мдж/кг (9000-10000 ккал/кг), удобством транспортировки и хранения, простотой подачи топлива в топку, точностью регулировки термического режима установки и др. В этом отношении Ж. к. т. уступает лишь газообразному топливу.

Лит.: Геллер 3. И., Мазут как топливо, М., 1965; Товарные нефтепродукты, их свойства и применение, М., 1971.



ЖИДКОЕ СТЕКЛО, водный раствор силиката натрия или калия; см. Стекло.



ЖИДКОСТНО-АБРАЗИВНАЯ ОБРАБОТКА, механическая обработка с целью очистки, шлифования, полирования деталей, а также упрочнения их поверхностей. Ж.-а. о. осуществляется в спец. установках (рис.), в к-рых на детали воздействуют растворы, составленные из антикоррозионных жидкостей и абразивных порошков, гранул, мелких осколков абразивных и др. материалов.
[910-11.jpg]

Схема установки для жидкостно-абразивного полирования: 1 - бак с обрабатывающим раствором; 2 - насос; 3 - форсунка; 4 - камера для обрабатываемых деталей; 5 - деталь.

Применяют прокачные, ультразвуковые, вибрационные и др. установки для очистки деталей от заусенцев, окалины, нагара; галтовочные, виброполировальные и др. установки для шлифования, полирования и упрочнения фасонных наружных и внутр. поверхностей. Ж.-а. о. не повышает точности обработки, а лишь улучшает качество поверхности, уменьшая её микрошероховатость. Наиболее эффективно применение этого метода для отделки фасонных поверхностей.

ЖИДКОСТНЫЙ ЛАЗЕР, лазер с жидким активным веществом. Преимущество Ж. л. - возможность циркуляции жидкости с целью её охлаждения. Это позволяет получить большие энергии и мощности излучения в импульсном и непрерывном режимах (см. Лазер).

В первых Ж. л. использовались растворы редкоземельных хелатов (см. Хелатные соединения). Они пока не нашли применения вследствие малости достижимой энергии и недостаточной хим. стойкости хелатов. Ж. л., работающие на неорганич. активных жидкостях, предложенных и синтезированных в СССР, обладают большими импульсными энергиями при значительной средней мощности. При этом Ж. л. генерируют излучение с узким спектром частот.

Интересными особенностями обладают Ж. л., работающие на растворах органич. красителей. Широкие спектральные линии люминесценции органич. красителей позволяют осуществить Ж. л. с непрерывной перестройкой длин волн излучения в диапазоне порядка неск. сотен А. Заменяя красители, можно обеспечить перекрытие всего видимого и части инфракрасного участков спектра. В Ж. л. на красителях в качестве источника накачки обычно используются твёрдотельные лазеры. Для нек-рых красителей можно использовать накачку от спец. импульсных газосветных ламп, дающих более короткие интенсивные вспышки белого света, чем обычные импульсные лампы (менее 50 мксек).

Лит.. см. при ст. Лазер.

М. Е. Жаботинский.



ЖИДКОСТНЫЙ МАНОМЕТР, жидкостный вакуумметр, прибор для измерения давления газов. В Ж. м. давление газа определяется по перемещению столба жидкости в U-образной трубке (см. Вакуумметрия).

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД), реактивный двигатель, работающий на жидком ракетном топливе. Схема ЖРД разработана К. Э. Циолковским в 1903, доказавшим возможность использования ЖРД для межпланетных полётов. Предложенные им принципы конструктивного решения ЖРД были дополнены Ю. В. Кондратюком и сохранились в совр. двигателях. Первые ЖРД были разработаны и испытаны амер. учёным Р. Годдардом в 1923 и нем. учёным Г. Обертом в 1929. Над созданием ЖРД за рубежом работали франц. учёный Р. Эно-Пельтри, нем. учёные Э. Зенгер, Г. Вальтер и др. Первые отечеств. ЖРД: ОРМ (опытный ракетный мотор) и ОРМ-1 построены и испытаны в Газодинамической лаборатории (ГДЛ) в 1930- 1931 В. П. Глушко; ОР-2 и двигатель-10 разработаны в Группе изучения реактивного движения Ф. А. Цандером и испытаны в 1932-33.

В 30-е гг. в СССР было создано семейство ЖРД ОРМ-1 - ОРМ-102. Эти ЖРД служили для отработки элементов конструкций, обеспечивающих зажигание, запуск, работу на режиме на различных жидких топливах, а также для практич. использования в летательных аппаратах (напр., ОРМ-50, ОРМ-52 и др.).

С 40-х гг. в СССР и за рубежом разработано большое кол-во типов ЖРД, нашедших широкое применение на ракетах различного назначения и на нек-рых самолётах. В 1942 в Германии были начаты лётные испытания ракеты Фау-2 В. фон Брауна с ЖРД тягой 245 кн конструкции В. Тиля. В 1943-46 на самолётах В. М. Петлякова, С. А. Лавочкина, А. С. Яковлева и П. О. Сухого были проведены лётные испытания вспомогат. авиац. ЖРД, созданных в Опытно-конструкторском бюро, выросшем из ГДЛ (ГДЛ-ОКБ). В СССР в нач. 50-х гг. полёты совершали баллистические ракеты, ЖРД к-рых обладали значительно большей тягой. В дальнейшем под рук. Глущко, А. М. Исаева, С. А. Косберга и др. сов. конструкторов были разработаны и созданы двигатели (см. рис. 1, 2), обеспечившие полёты первых сов. искусств. спутников Земли, искусств. спутников Солнца, Луны, Марса, автоматич. станций на Луну, Венеру и Марс, космич. кораблей, всех геофизич. и др. ракет в 1949-72. ЖРД получили широкое развитие в США, Великобритании, Франции и др. странах.

ЖРД состоит из камеры сгорания с соплом, систем подачи компонентов топлива, органов регулирования, зажигания и вспомогат. агрегатов (теплообменников, смесителей и др.). ЖРД развивает тягу от мн (микроракетные двигатели) до неск. Мн (ЖРД 1-й ступени ракеты "Сатурн-5" создаёт тягу ок. 7 Мн); удельный импульс достигает 4500 н*сек/кг для 2-компонентных и до 5000 н*сек/кг для 3-компонентных топлив.

Масса двигателя, отнесённая к единице тяги, составляет 0,7-2 г/н; габаритные размеры изменяются в широких пределах. ЖРД бывают с однократным и многократным запуском, одно- и многокамерные. Ракетные силовые установки могут быть одно- и многодвигательные. Система подачи топлива в ЖРД может быть вытеснительная или с турбонасоссным агрегатом (ТНА) (рис. 3). ЖРД с ТНА бывают 2 осн. схем: без дожигания генераторного газа и с дожиганием. В ЖРД с ТНА без дожигания генераторного газа продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогат. сопла, часто являющиеся рулевыми. Генераторный газ, продукт неполного сгорания, имеет относительно низкую темп-ру, а вспомогат. сопла меньшую степень расширения, чем основные, поэтому удельный импульс, получаемый при истечении продуктов сгорания через вспомогат. сопла, меньше удельного импульса основной камеры ЖРД, т. е. имеет место потеря удельного импульса. В ЖРД с дожиганием генераторного газа относит. низкотемпературные продукты газогенерации, получаемые из осн. компонентов топлива, после срабатывания в турбине направляются в камеру ЖРД для дожигания.

Такие ЖРД не имеют потери удельного импульса, обусловленной приводом ТНА. По назначению различают ЖРД: основные (маршевые), корректирующие, тормозные, рулевые: микроракетные ЖРД могут быть стабилизирующими и ориентационными. Обычно ЖРД работают при постоянном давлении в камере сгорания, но микроракетные двигатели бывают импульсными. Разрабатываются комбинированные двигатели, использующие ЖРД: турбо- и воздушноракетные. По роду окислителя ЖРД бывают: азотнокислотные, азоттетроксидные, кислородные, перекисьводородные, фторные и др. Проблемы, возникающие при создании ЖРД, многочисленны. Необходим рациональный выбор топлива, удовлетворяющего заданным удельному импульсу и условиям эксплуатации, а также совершенство рабочего процесса для достижения заданного удельного импульса. Требуется устойчивая работа на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя. Охлаждение двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких темп-pax (до 5000 К) и давлениях(до десятков[910-12.jpg] усугубляемому в нек-рых случаях присутствием конденсированной фазы, представляет значительные трудности.

[910-13.jpg]

Рис. 3. Схема подачи топлива в жидкостном ракетном двигателе с турбонасосным агрегатом: 1 - топливные баки; 2 - парогенератор; 3 - турбонасосный агрегат; 4 - форсунки; 5 - камера сгорания; 6 - сопло.

Большинство камер охлаждается одним из компонентов топлива. Если при этом не удаётся охладить сопло и камеру до темп-ры, требуемой условиями прочности (при использовании всего топлива), то в слое газа, прилегающем к стенке, создают пониженную темп-ру путём обогащения пристеночного слоя одним из компонентов. Часто применяется смешанное охлаждение, т. е. наружное и внутреннее одновременно(рис. 4).

[910-14.jpg]

Рис. 4. Схема жидкостного ракетного двигателя со смешанным охлаждением; 1 - баллон со сжатым газом; 2 - редуктор давления; 3 - топливные баки: 4 - клапана; 5 - камера сгорания: 6 - пояса подачи горючего для внутреннего охлаждения; 7 - сопло.

Для защиты стенок камеры и сопла от нагрева одновременно с их охлаждением широко применяют теплозащитные покрытия. Сложной задачей является надёжность подачи топлива (криогенного, агрессивного и др.) при давлениях до мн. десятков Мн/м2 и расходах до неск.т/сек. Необходимо обеспечение минимальной массы двигателя. См. также ст. Реактивный двигатель, Ракетный двигатель.

Лит.: Циолковский К. Э., Исследование мировых пространств реактивными приборами, Калуга, 1926; Добровольский М. В., Жидкостные ракетные двигатели, М., 1968; Алемасов В. Е., Дрегалин А. Ф., Тишин А. П., Теория ракетных двигателей, 2 изд., М., 1969; Петрович Г. В., Ракетные двигатели ГДЛ-ОКБ. 1929-1969, М., 1969; Волков Е. Б., Головков Л. Г., Сырицын Т. Л., Жидкостные ракетные двигатели, М., 1970; Rocket propulsion, Amst,- L.- N. Y., 1960. С. З. Копелев.

ЖИДКОСТЬ, агрегатное состояние вещества, промежуточное между твёрдым и газообразным состояниями. Ж., сохраняя отд. черты как твёрдого тела, так и газа, обладает, однако, рядом только ей присущих особенностей, из к-рых наиболее характерная - текучесть. Подобно твёрдому телу, Ж. сохраняет свой объём, имеет свободную поверхность, обладает определённой прочностью на разрыв при всестороннем растяжении и т. д. С другой стороны, взятая в достаточном количестве Ж. принимает форму сосуда, в к-ром находится. Принципиальная возможность непрерывного перехода Ж. в газ также свидетельствует о близости жидкого и газообразного состояний.

По хим. составу различают однокомпонентные, или чистые, Ж. и двух- или многокомпонентные жидкие смеси (растворы). По физ. природе Ж. делятся на нормальные (обычные), жидкие кристаллы с сильно выраженной анизотропией (зависимостью свойств от направления) и квантовые жидкости - жидкие 4Не, 3Не и их смеси - со специфич. квантовыми свойствами при очень низких темп-pax. Нормальные чистые Ж. имеют только одну жидкую фазу (т. е. существует один единственный вид каждой нормальной Ж.). Гелий 4Не может находиться в двух жидких фазах - нормальной и сверхтекучей, а жидкокристаллич. вещества - в нормальной и одной или даже двух анизотропных фазах.

Общим для всех нормальных Ж., в т. ч. и для смесей, является их макроскопич. однородность В Изотропность при отсутствии внешних воздействий. Эти свойства сближают Ж. с газами, но резко отличают их от анизотропных кристаллич. твёрдых тел. Аморфные твёрдые тела (напр., стёкла), с совр. точки зрения, являются переохлаждёнными Ж. (см. Аморфное состояние) и отличаются от обычных Ж. только численными значениями кинетич. характеристик (существенно большей вязкостью и др.). Область существования нормальной жидкой фазы ограничена со стороны низких темп-р фазовым переходом в твёрдое состояние-. кристаллизацией или (в зависимости от величины приложенного давления) фазовым переходом в сверхтекучее состояние для 4Не и в жидко-анизотропное состояние для жидких кристаллов. При давлениях ниже критич. давления рк нормальная жидкая фаза ограничена со стороны высоких темп-р фазовым переходом в газообразное состояние - испарением. При давлениях р>рк фазовый переход отсутствует и по своим физ. свойствам Ж. в этой области неотличима от плотного газа. Наивысшая темп-pa Тк, при к-рой ещё возможен фазовый переход Ж.- газ, называется критической. Значения рки Тк определяют критич. точку чистой Ж., в к-рой свойства Ж. и газа становятся тождественными. Наличие критич. точки для фазового перехода Ж.- газ позволяет осуществить непрерывный переход из жидкого состояния в газообразное, минуя область, где газ и Ж. сосуществуют (см. Критическое состояние).

Т. о., при нагревании или уменьшении плотности свойства Ж. (теплопроводность, вязкость, самодиффузия и др.), как правило, меняются в сторону сближения со свойствами газов. Вблизи же темп-ры кристаллизации большинство свойств нормальных Ж. (плотность, сжимаемость, теплоёмкость, электропроводность и т. д.) близки к таким же свойствам соответствующих твёрдых тел. В табл. приведены значения теплоёмкости при постоянном давлении (ср) ряда веществ в твёрдом и жидком состояниях при темп-ре кристаллизации.

Теплоёмкость некоторых веществ [в дж/(кг*К)], при температуре кристаллизации


Na

Hg

РЬ

Zn

Cl

NaCl
ср,тв

1382

138

146

461

1620

1405
ср, ж

1386

138

155

542

1800

1692

Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и твёрдых телах вблизи темп-ры кристаллизации имеет примерно одинаковый характер.

Молекулярная теория Ж. По своей природе силы межмолекулярного взаимодействия в Ж. и кристаллах одинаковы и имеют примерно одинаковые величины. Наличие в Ж. сильного межмолекулярного взаимодействия обусловливает, в частности, существование поверхностного натяжения на границе Ж. с любой др. средой. Благодаря поверхностному натяжению Ж. стремится принять такую форму, при к-рой её поверхность (при данном объёме) минимальна. Небольшие объёмы Ж. имеют обычно характерную форму капли. В отсутствии внешних сил, когда действуют только межмолекулярные силы (напр., в условиях невесомости), Ж. приобретает форму шара. Влияние поверхностного натяжения на равновесие и движение свободной поверхности Ж., границ Ж. с твёрдыми телами или границ между несмешивающимися Ж. относится к области капиллярных явлений.

Фазовое состояние вещества зависит от физ. условий, в к-рых оно находится, гл. обр. от темп-ры Т и давления р. Характерной определяющей величиной является зависящее от темп-ры и давления отношение е (Т, р) средней потенциальной энергии взаимодействия молекул к их средней кинетич. энергии.

[910-15.jpg]

Вид радиальной функции распределения g(r) для жидкого натрия (в условных единицах): а ~ распределение частиц в зависимости от расстояния r; 6 - число частиц в тонком сферическом слое как функция расстояния r. Пунктиром показано распределение молекул при отсутствии упорядоченности в их расположении (газ). Вертикальные отрезки - положения атомов в кристаллич. натрии, числа при них - количество атомов в соответствующих координационных сферах (т. н. координационные числа).

Для твёрдых тел e (Т,р) " 1; это значит, что силы межмолекулярного взаимодействия велики и удерживают молекулы (атомы, ионы) вблизи равновесных положений - узлов кристаллич. решётки, несмотря на тепловое движение частиц. В твёрдых телах тепловое движение имеет характер коллективных колебаний атомов (ионов) около узлов кристаллич. решётки.

В газах осуществляется обратный предельный случай е(Т,р) << 1: силы притяжения между молекулами недостаточны, чтобы удержать их вблизи друг от друга, вследствие чего положения и скорости молекул распределены почти хаотически.

Для Ж. е (Т,р)~1: интенсивности упорядочивающих межмолекулярных взаимодействий и разупорядочивающего теплового движения молекул имеют сравнимые значения, чем и определяется вся специфичность жидкого состояния вещества. Тепловое движение молекул в неме-таллич. Ж. состоит из сочетания коллективных колебательных движений того же типа, что и в кристаллич. телах, и происходящих время от времени скачков молекул из одних временных положений равновесия (центров колебаний) в другие. Каждый скачок происходит при сообщении молекуле энергии активации, достаточной для разрыва её связей с окружающими молекулами и перехода в окружение др. молекул. В результате большого числа таких скачков молекулы Ж. более или менее быстро перемешиваются (происходит самодиффузия, к-рую можно наблюдать, напр., методом меченых атомов). Характерные частоты скачков составляют ~ 1011-1012 сек-1 для низкомолекулярных Ж., много меньше для высокомолекулярных, а в отд. случаях, напр. для сильно вязких Ж. и стёкол, могут оказаться чрезвычайно низкими.

При наличии внешней силы, сохраняющей своё направление более длительное время, чем интервалы между скачками, молекулы перемещаются в среднем в направлении этой силы. Т. о., статические или низкочастотные механич. воздействия приводят к проявлению текучести Ж. как суммарному эффекту от большого числа молекулярных переходов между временными положениями равновесия. При частоте воздействий, превышающей характерные частоты молекулярных скачков, у Ж. наблюдаются упругие эффекты (напр., сдвиговая упругость), типичные для твёрдых тел. Однородность и изотропность нормальных Ж. молекулярная теория Ж. объясняет отсутствием у них дальнего порядка во взаимных положениях и ориентациях молекул (см. Дальний порядок и ближний порядок). Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми. В идеальном кристаллич. теле, как правило, существует "жёсткий" дальний порядок в расположении и ориентации молекул (атомов, ионов). В жидком кристалле дальний порядок наблюдается лишь в ориентации молекул, но он отсутствует в их расположении.

Ж. иногда разделяют на неассоциированные и ассоциированные, в соответствии с простотой или сложностью их термодинамич. свойств. Предполагается, что в ассоциированных Ж. есть сравнительно устойчивые группы молекул - комплексы, проявляющие себя как одно целое. Существование подобных комплексов в нек-рых растворах доказывается прямыми физ. методами. Наличие устойчивых ассоциаций молекул в однокомпонентных Ж. недостоверно.

Основой совр. молекулярных теорий жидкого состояния послужило экспериментальное обнаружение в Ж. ближнего порядка - согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из 2, 3 и большего числа молекул. Эти статистич. корреляции, определяющие молекулярную структуру жидкости, простираются на область протяжённостью порядка неск. межатомных расстояний и быстро исчезают для далеко расположенных друг от друга частиц (отсутствие дальнего порядка). Структурные исследования реальных Ж., позволившие установить эту особенность жидкого состояния, производятся методами рентгеновского структурного анализа и нейтронографии.

По структуре и способам их описания Ж. делят на простые и сложные. К первому сравнительно малочисленному классу относят однокомпонентные атомарные жидкости. Для описания свойств таких Ж. достаточно указать лишь взаимное расположение атомов. К этому классу Ж. относятся жидкие чистые металлы, сжиженные инертные газы и (с некоторыми оговорками) Ж. с малоатомными симметричными молекулами, напр. ССI4. Для простых Ж. результаты рентгено-структурного или нейтронографического анализа могут быть выражены с помощью т. н. радиальной функции распределения g(r) (см. рис.). Эта функция характеризует распределение частиц вблизи произвольно выбранной частицы, т. к. значения g(r) пропорциональны вероятности нахождения двух атомов (молекул) на заданном расстоянии r друг от друга. Ход кривой g(r) наглядно показывает существование определённой упорядоченности в простой Ж.- в ближайшее окружение каждой частицы входит в среднем определённое число частиц. Для каждой Ж. детали функции g(r) незначительно меняются с изменением темп-ры и давления. Расстояние до первого пика определяет среднее межатомное расстояние, а по площади под первым пиком можно восстановить среднее число соседей (среднее координационное число) атома в Ж. В большинстве случаев эти характеристики вблизи линии плавления оказываются близкими к кратчайшему межатомному расстоянию и координац. числу в соответствующем кристалле. Однако, в отличие от кристалла, истинное число соседей у частицы и истинное межатомное расстояние в Ж. являются не постоянными числами, а случайными величинами, и по графику g(r) устанавливаются лишь их средние значения.

При сильном нагревании Ж. и приближении к газовому состоянию ход функции g(r) постепенно сглаживается соответственно уменьшению степени ближнего порядка. В разреженном газе g(r)=1.

Для сложных Ж. и для жидких смесей расшифровка рентгенограмм более сложна и во многих случаях полностью не может быть осуществлена. Исключение составляет вода и нек-рые др. низкомолекулярные Ж., для к-рых имеются довольно полные исследования и описания их статистич. структуры.

Теория кинетич. и динамич. свойств Ж. (диффузии, вязкости и т. д.) разработана менее полно, чем равновесных свойств (теплоёмкости и др.). Динамич. теория жидкого состояния весьма сложна и пока не получила достаточного развития. В теории Ж. большое развитие получили численные методы, позволяющие рассчитывать свойства простых Ж. с помощью быстродействующих вычислительных машин. Наибольший интерес представляет метод молекулярной динамики, непосредственно моделирующий на вычислительной машине совместное тепловое движение большого числа молекул при заданном законе их взаимодействия и по прослеженным траекториям многих отдельных частиц восстанавливающий все необходимые статистич. сведения о системе. Таким путём получены точные теоретич. результаты относительно структуры и термодинамич. свойств простых, неметаллич. Ж. Отдельную и ещё не решённую проблему составляет вопрос о структуре и свойствах простых Ж. в непосредств. окрестности критической точки. Нек-рые успехи были здесь достигнуты в последнее время методами теории подобия. В целом проблема критических явлений для чистых Ж. и смесей остаётся ещё недостаточно выясненной.

Отд. проблему составляет вопрос о структуре и свойствах жидких металлов, на к-рые значительное влияние оказывают имеющиеся в них коллективизированные электроны. Несмотря на некоторые успехи, полной электронной теории жидких металлов ещё не существует. Значительные (пока ещё не преодоленные) трудности встретились при объяснении свойств жидких полупроводников.

Основные направления исследований жидкого состояния. Многочисл. макроскопич. свойства Ж. изучаются и описываются методами различных разделов механики, физики и физ. химии. Равновесные механич. и тепловые свойства Ж. (сжимаемость, теплоёмкость и др.) изучаются термодинамич. методами. Важнейшей задачей является нахождение уравнения состояния для давления и энергии как функции от плотности и темп-ры, а в случае растворов - и от концентраций компонентов. Знание уравнения состояния позволяет методами термодинамики установить многочисл. связи между различными механич. и тепловыми характеристиками Ж. Имеется большое количество эмпирич., полуэмпирич. и приближённых теоретич. уравнений состояния для различных индивидуальных жидкостей и их групп.

Неравновесные тепловые и механич. процессы в Ж. (напр., диффузия, теплопроводность, электропроводность и др.), особенно в смесях и при наличии хим. реакций, изучаются методами термодинамики необратимых процессов.

Механич. движения Ж., рассматриваемых как сплошные среды, изучаются в гидродинамике. Важнейшее значение имеет Навъе - Стокса уравнение, описывающее движение вязкой Ж. У т. н. ньютоновских Ж. (вода, низко-молекулярные органич. Ж., расплавы солей и др.) вязкость не зависит от режима течения (в условиях ламинарного течения, когда Рейнолъдса число R < Rкритич.), в этом случае вязкость является физ.-хим. постоянной, определяемой молекулярной природой Ж. и её состоянием (темп-рой и давлением). Уненьютоновских (структурно-вязких) Ж. вязкость зависит от режима течения даже при малых числах Рейнольдса (жидкие полимеры, стёкла в интервале размягчения, эмульсии и др.). Свойства неньютоновских Ж. изучает реология. Специфич. особенности течения жидких металлов, связанные с их электропроводностью и лёгкой подверженностью влиянию магнитных полей, изучаются в магнитной гидродинамике. Приложения методов гидродинамики к задачам молекулярной физики жидкостей изучаются в физ.-хим. гидродинамике.

Лит.: Френкель Я. И., Собрание избранных трудов, т. 3, М., 1959; Фишер И. 3., Статистическая теория жидкостей, М., 1961; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, М., 1953; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Скрышевский А. Ф., Рентгенография жидкостей, К., 1966; Физика простых жидкостей. Экспериментальные исследования, пер. с англ., М., 1972 [в печати].

И. 3. Фишер.

"ЖИДОВСТВУЮЩИЕ", православно-церковное наименование одной из разновидностей ересей в России во 2-й пол. 15-нач. 16 вв., неупотребляемое в советской ист. науке. См. Ереси в России.

ЖИЖЕРАЗБРАСЫВАТЕЛЬ, прицепная машина для откачки навозной жижи из жижесборников скотных дворов, вывоза её и равномерного розлива по полю. Ж. можно использовать для транспортировки жидких растворов и суспензий ядохимикатов и гербицидов, приготовления торфо-фекальных и др. компостов, подвоза воды и др. полужидких и жидких грузов. Осн. узлы используемой в СССР машины ЗЖВ-1,8 - цистерна, рама с ходовой частью, заборный рукав, напорно-вакуумная магистраль, эжектор, прицеп. Агрегатируют Ж. с тракторами "Беларусь". Цистерну заполняют и опорожняют под действием разрежения и избыточного давления, создаваемых двигателем трактора при помощи эжектора. Ёмкость цистерны 1800 л; ширина полосы разбрызгивания жидкости до 8,5 л; высота подъёма жидкости из заборного рукава до 7 м. Обслуживает Ж. тракторист. Пром-сть СССР выпускает также автожижеразбрасыватель, смонтированный на шасси автомобиля и работающий под действием разрежения и давления, создаваемых двигателем автомобиля, и заправщик-жижеразбрасыватель, представляющий собой одноосный тракторный прицеп с цистерной, заборным рукавом, напорно-вакуумной магистралью, эжектором.



ЖИЖИЯ (Jijia), река в Румынии, прав. приток Прута. Дл. 280 км. Берёт начало в пределах СССР ок. границы с Румынией. На значит. протяжении течёт по Предкарпатской равнине. В низовьях на протяжении 70 км протекает параллельно р. Прут в долине, с обширной заболоченной поймой. Снегово-дождевое питание, весной высокое половодье. Летом сильно мелеет. Несудоходна.

ЖИЖКА (Zizka) Ян (ок. 1360, Троцнов, Юж. Чехия,- 11.10.1424, Пршибислав), деятель гуситского революционного движения, полководец, нац. герой чешского народа. Происходил из среды мелких дворян. Сражался в Грюнвалъдской битве 1410. С начала гуситского революц. движения Ж.- активный его участник. Первой крупной победой, в к-рой проявился полководческий талант Ж., был бой у Судомержа (25 марта 1420). После создания Табора Ж.- один из четырёх его гетманов. Ж. успешно руководил обороной Витковой горы, где решился исход битвы за Прагу (14 июля 1420). Виткова гора впоследствии иногда именовалась Жижковой (в 1950 здесь открыт памятник Ж., скульптор Б. Кафка). С дек. 1420 Ж.- первый гетман таборитов. Поддерживал в Таборе противников хилиазма и способствовал в 1421 расправе умеренной части таборитов с пикартами (см. Пикардство). В нач. янв. 1422 Ж. нанёс крестоносцам решительное поражение у Немецки-Брода; обратил в бегство участников 3-го крестового похода (осень 1422). После размежевания между правым и левым крылом гуситов (1422) Ж. возглавил силы левого таборитского крыла. В 1423 Ж. основал в сев.-вост. Чехии т. н. Оребитское братство левых гуситов с центром в Градец-Кралове (Малый Табор). После смерти Ж. от чумы во время осады г. Пршибислава (близ границы с Моравией) члены этого общества называли себя "сиротами".

Ж. создал хорошо организованное и обученное войско, отличавшееся высокими боевыми качествами и железной дисциплиной, разработал воинский устав, создал, наряду с пехотой и кавалерией, новые рода войск - повозочный и пушкарский. Стратегия Ж. была направленана решительный разгром противника в полевом сражении. Для тактики войск под рук. Ж. характерны смелый манёвр, чёткое взаимодействие родов войск и частей, особые походные и боевые порядки (полевой табор из повозок, см. ваген-бург); Ж. умело применял боевую технику, в частности ввёл лёгкие пушки на повозках. Всё это обеспечивало победу над рыцарским войском.

Лит.: Томек В. В., Ян Жижка, пер. с чеш., СПБ, 1889; Ревзин Г., Ян Жижка, [М.], 1952; Рубцов Б. Т., Гуситские войны, М., 1955. См. также лит. при ст. Гуситское революционное движение.

Б. Т. Рубцов.



ЖИЗДРА, река в Калужской обл. РСФСР, лев. приток Оки. Дл. 223 км, пл. басс. 9170 км2. Протекает в пределах Среднерусской возв. Питание снеговое и дождевое. Ср. расход воды ок. 35 м3/сек (г. Козельск). Замерзает в конце ноября, вскрывается в нач. апр. Притоки: Рессета, Вытебеть (прав.), Серена (лев.). Сплавная. На реке - гг. Жиздра, Козельск.



ЖИЗДРА, город, центр Жиздринского р-на Калужской обл. РСФСР. Расположен на р. Жиздра (приток Оки), в 12 км к С.-З. от ж.-д. ст. Зикеево (на линии Москва - Брянск). Молочный з-д, филиал Моск. ф-ки кожаных изделий, бондарное и мебельное произ-ва. Город с 1777.



ЖИЗНЕННАЯ ЁМКОСТЬ ЛЁГКИХ, максимальный объём воздуха, выдыхаемый после самого глубокого вдоха; см. Лёгочные объёмы.



ЖИЗНЕННАЯ ФОРМА растений, биологическая форма, биоморф а, внешний облик растений (габитус), отражающий их приспособленность к условиям среды. Термин предложен дат. ботаником Э. Вармингом (1884), понимавшим под ним форму, в к-рой вегетативное тело растения находится в гармонии с внешней средой в течение всей жизни, от семени до отмирания. Ж. ф. наз. также единицу экологич. классификации растений, под к-рой подразумевается группа растений со сходными приспособительными структурами. Это сходство не обязательно связано с родством и часто бывает конвергентным (напр., кактусы и нек-рые молочаи, образующие Ж. ф. стеблевых суккулентов). Ж. ф. зависит гл. обр. от структуры надземных, и подземных вегетативных органов растений и связана с ритмом их развития и длительностью жизни. В ходе эволюции Ж. ф. вырабатывается в результате естественного отбора в различных климатич., почвенных и биоценотич. условиях. Ж. ф. определённых групп растений отражает их приспособленность к пространств. расселению и закреплению на территории, к наиболее полному использованию всего комплекса условий местообитания.

Конкретная Ж. ф. каждого растения (дерево, кустарник, лиана, подушковидное растение, стланец и т. д.) изменяется в его онтогенезе. Однолетние сеянцы ели или дуба ещё не имеют формы вечнозелёного или листопадного дерева, к-рая свойственна этим видам во взрослом состоянии. Один и тот же вид в разных условиях может иметь разную Ж. ф., напр. многие древесные породы (дуб, бук, ель, лиственница, туркестанский можжевельник и др.), образующие высокоствольные деревья в лесной зоне и лесном поясе гор, дают на сев. и высотной границах своего распространения кустарниковые и стелющиеся формы. Поэтому под Ж. ф. как классификац. единицей понимают совокупность взрослых особей в нормальных для них условиях обитания.

Первая физиономич. классификация осн. форм растений по их внешнему облику, определяющему ландшафт местности, принадлежит нем. естествоиспытателю А. Гумбольдту (1806), к-рый выделил 19 таких форм. Преим. физиономическими были системы "основных форм" австр. ботаника А. Кернера (1863), "растительных форм" нем. ботаника А. Грпзебаха (1872), жизненных форм нем. систематика О. Друде (1913). Однако в них уже подчёркивались зависимость облика растений от климата, важность биол. признаков. В дальнейшем появились классификации, основанные на спец. приспособительных признаках. Из них наиболее распространена и популярна классификация Ж. ф. дат. ботаника К. Раункиера (1905, 1907), основанная па положении почек возобновления по отношению к поверхности почвы в неблагоприятных условиях (зимой пли в засушливый период) и характере защитных почечных покровов, т. е. на признаках, легко доступных для наблюдения. Раункиер выделяет след. 5 типов Ж. ф.: фанерофиты - почки возобновления высоко над землёй (деревья, кустарники, деревянистые лианы, эпифиты); хамефиты - низкие растения с почками, расположенными не выше 20- 30 см над землёй и часто зимующие под снегом (кустарнички, полукустарнички, нек-рые многолетние травы); гемикриптофиты - травянистые многолетники с почками на уровне почвы, защищаемыми снегом и листовым отпадом: криптофиты - почки скрыты под землёй (корневищные, клубневые, луковичные геофиты) или под водой (гидрофиты); терофиты - однолетники, переносящие неблагоприятный период в виде семян.

Для травянистых растений чаще пользуются классификацией сов. ботаника Г. Н. Высоцкого (1915), развитой Л. И. Казакевичем (1922), в к-рой за основу принят характер подземных органов и способность растений к вегетативному размножению и захвату площади: стержнекорневые (вегетативное размножение отсутствует), дер-повинные, луковичные и клубнелуковичные (у этих групп вегетативное размножение слабо выражено), корнеотпрысковые (вегетативное размножение интенсивное). В. Р. Вильяме подразделял Ж. ф. злаков по способу кущения и положению почек на длиннокорневищныее, рыхлокустовые и плотнокустовые.

Сов. ботаник И. Г. Серебряков предложил (1962, 1964) классификацию Ж. ф. (рис. 2), в к-рой наиболее крупные подразделения (отделы и типы) выделены по структуре и длительности жизни надземных скелетных осей (деревья со стволом, живущим десятки и сотни лет, кустарники - с осями, живущими 20- 30 лет, кустарнички - 5-10 лет, травы с однолетними ортотропными побегами). Каждый тип детализируется далее по ряду признаков (см. рис. 3, 4).

Изучение Ж. ф. важно для решения целого ряда теоретич. и практич. вопросов. Так, Раункиер использовал процентный состав Ж. ф. во флоре той или иной области ("биологический спектр") для характеристики климата (напр., климат фанерофитов - влажные тропики, гемикриптофитов - сев. умеренный и холодный пояса). Геоботаники изучают Ж. ф. как отражающие экология, условия компоненты фитоиеноза.
[910-17.jpg]

Рис. 3. Нарастание и длительность жизни скелетных осей у различных жизненных форм: а - кустарник: б - кустарничек: в - полукустарничек; г - многолетняя трава. Точками и пунктиром обозначены отмирающие части побегов. Римские цифры - основные структурные оси, арабские - годичные приросты.

При комплексном изучении эдификаторов (оси. видов, слагающих фитоценоз) степпой растительности пользуются понятием экобиоморфа (Е. М. Лавренко и др.), несколько отличным от Ж. ф. и включающим также и физиол. характеристики объектов. Про сравнитсльно-морфогенетич. исследованиях ставят целью выяснение хода формирования Ж. ф. как в онтогенезе, так и в филогенезе отд. системами, групп. Изучение изменений Ж. ф. под влиянием разных факторов среды очень важно для работ по интродукции растений и ведётся в ряде ботанич. садов.

Лит.: Шмитхюзен И., Общая география растительности, пер. с нем., М.. 1966; Серебряков И. Г., Жизненные формы высших растений и их изучение, в кн.З Полевая геоботаника, [B.] 3, М.- Л., 1964: его же. Экологическая морфология растений, М., 1962. Т. И. Серебрякова.

Ж. ф. животных - группа родственных в систематич. отношении животных (обычно из близких отрядов или семейств), обладающих сходными экологоморфологич. приспособлениями для обитания в одинаковой среде. У неродственных организмов приспособления даже для обитания в сходной среде могут быть существенно различными (напр., приспособления для плавания и ныряния у птиц и млекопитающих). Натуралисты издавна разделили животных на экологии, группы (это вошло даже в такие обиходные названия, как "нырцы", "норники". "землерои" и т. д.), но термин "Ж. ф." зоологи стали применять только в 20 в., заимствовав его у ботаников. Большинство зоологов определяет Ж. ф. сходно, но при экологии, анализе той или инойгруппы за основу берут разные показатели (способы передвижения, размножения, добывания пищи, приуроченность к определённой экологии, нише, ландшафту, ярусу растительности, различные стадий онтогенеза и т. п.); поэтому Ж. ф. в трактовке разных авторов не сравнимы между собой. Анализ Ж. ф. позволяет судить об особенностях среды обитания и путях приспособит. изменений организмов. Д. А. Криволуцкий.