загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

пах, обусловленный примесью 2,4-дихлорфенола. В пром-сти Д. к. получают взаимодействием солей монохлоруксусной к-ты с 2,4-дихлорфе-нолятом натрия и хлорированием фено-ксиуксусной к-ты. По масштабам производства и применения Д. к. среди гербицидов занимает первое место. Применяют Д. к. в виде растворимых в воде солей с алифатич. аминами (диметил-амин, диэтиламин, этаноламины и др.), в виде натриевой соли, эфиров с различными спиртами (изопропиловый, бутиловый, октиловый и др.) и амидов (напр., о-хлоранилида).

При нормах расхода 0,5-2 кг/га с помощью Д. к. могут быть уничтожены почти все виды двудольных сорных растений (бодяк полевой, борщевик обыкновенный, василёк и др.). Обработку зерновых культур проводят в фазе кущения.

К действию Д. к. чувствительны мн. культурные растения, такие, как хлопчатник, подсолнечник, плодовые (яблоня, груша, слива, вишня, абрикос, персик), ягодные (смородина, земляника, крыжовник, малина и др.), а также лиственные древесные и кустарниковые породы. Действие гербицида на бедных почвах и в засушливый период слабее; наоборот, растения, выросшие на богатых и влажных почвах, погибают быстрее. Д. к. умеренно токсична для животных и человека.

Механизм действия Д. к. окончательно не изучен. Известно, что она быстро всасывается листьями растений и вызывает разрастание меристематич. клеток, вследствие чего происходит разрыв тканей, скручивание и гибель растения. В почве Д. к. под влиянием микроорганизмов сравнительно быстро разрушается и не накапливается.

Лит.: Мельников Н. Н., Баскаков Ю. А., Химия гербицидов и регуляторов роста растений, М., 1962; Крафтс А., Роббинс У., Химическая борьба с сорняками, пер. с англ., М., 1964; Мельников Н. Н., Химия пестицидов, М., 1968. Н. Н. Мельников.

ДИХЛОРЭТАН, хлористый этилен, СlСН2СН2Сl, бесцветная подвижная жидкость с запахом, напоминающим запах хлороформа; tпл - 35,9 "С, tкип 83,5 °С, плотность 1,2600 г/см3 (15 °С), п 15D 1,4476; темп-pa вспышки 21,1 °С (в открытой чашке); пределы взрываемости в воздухе 6,20-15,90% (по объёму). Д. плохо растворим в воде (0,81% при 25 °С), образует азеотропную смесь с водой (tкип 71,5 °С, 82,9% Д.). Гидролиз Д. приводит к этиленгликолю НОСН2СН2ОН. Пиролиз или взаимодействие Д. со щёлочью даёт винилхлорид, реакция с аммиаком - этилендиамин и т. д. При нагревании с полисульфидами натрия Д. образует полисульфидный каучук. Д. получают при взаимодействии этилена и хлора.

Д. токсичен. Предельно допустимая концентрация паров в воздухе 0,01%. Д. широко применяют как растворитель в различных произ-вах, как компонент антидетонационных смесей, фумигант, сырьё для получения полисульфидного каучука.

ДИХОГАМИЯ (от греч. dicha - на две части, отдельно и gamos - брак), неодновременное созревание в цветках пыльников и рылец. Д. имеет значение для перекрёстного опыления, что впервые отметил А. Т. Болотов (1780). У одних цветков сначала созревают пыльники (протандрия), у других - рыльца (протогиния). Д. наблюдается не только в обоеполых, но и в однополых цветках однодомных и двудомных растений. Д. наз. совершенной, если рыльца созревают после увядания тычинок (или наоборот); чаще встречается Д. несовершенная - половозре-лость позднее созревающих органов наступает при ещё неутраченной функции органов противоположного пола. Протандрия наблюдается почти у всех растений сем. сложноцветных, зонтичных и мн. др. Протогиния встречается реже, напр, у растений сем. крестоцветных, розовых, лютиковых (анемоны) и нек-рых др. Д. наз. также неодновременное созревание органов разного пола у споровых растений.

ДИХОТОМИЧЕСКОЕ ДЕЛЕНИЕ, деление объёма понятия (класса, множества) на два соподчинённых (производных) класса по формуле исключённого третьего: "А или не-А" (см. Исключённого третьего принцип). Иначе говоря, только такое деление на два будет дихотомическим, в к-ром производные классы определяются парой логически противоречивых свойств (терминов), одно из к-рых служит основанием деления. Так, деление множества всех людей на мужчин и не-мужчин (по признаку -"быть мужчиной") является дихотомическим, но деление того же множества на класс мужчин и класс женщин (по признаку пола) не является Д. д.- основания деления здесь разные, а свойство "быть мужчиной" логически не противоречит свойству " быть женщиной". Последний тип деления (в виду аналогии "деление на два") называют иногда псевдодихотомическим. С точки зрения результата оба типа деления могут совпадать; в этом смысле отнесение нек-рого "деления на два" к типу дихотомического (если "абсолютно"- с точки зрения определения -оно не является таковым) зависит в ряде случаев от принимаемых допущений. Так, в рамках двузначности принципа псевдодихотомическое деление высказываний на истинные и ложные (основание деления - значение истинности высказывания) равнозначно их Д. д. на класс истинных и класс неистинных высказываний (основание деления - свойство высказывания "быть истинным"). Но если принцип двузначности не принимать, то очевидно, что, с точки зрения результата, эти два деления явно различны: в числе неистинных высказываний могут быть и такие, к-рые у нас нет оснований считать ложными. Любое псевдодихотомич. деление может быть преобразовано в Д. д., но не наоборот. Это связано, в частности, с тем, что при Д. д. один из производных классов - дополнительный - определяется всегда только отрицательно (посредством отрицательного термина), тогда как в псевдодихотомич. делении оба класса определяются положительно, заменить же отрицательное определение положительным не всегда возможно. Напр., поскольку нет положительного определения понятия "трансцендентная функция", для Д. д. функций на алгебраические и трансцендентные (неалгебраические) нет и соответствующего псевдодихотомич. деления. М. М. Новосёлов.

ДИХОТОМИЯ (греч. dichotomia, от dicha - на две части и tome - разрез, сечение), тип ветвления растений, при к-ром ось разделяется на 2 новые, обычно одинаково развитые ветви (см. Ветвление). Д. свойственна и некоторым беспозвоночным животным (напр., дихотомическое деление кишечнополост-ных).

ДИХРОИЗМ (от греч. dichroos - двухцветный), различная окраска одноосных кристаллов (обладающих двойным лучепреломлением) в проходящем свете при взаимно перпендикулярных направлениях наблюдения - вдоль оптич. оси и перпендикулярно к ней. Напр., кристалл апатита, освещаемый белым светом, кажется на просвет светло-жёлтым, если смотреть по направлению оптич. оси, и зелёным - в перпендикулярном направлении. Окраску кристалла в указанных условиях наблюдения называют, соответственно, "осевой" и "базисной". При др. направлениях наблюдения кристалл также виден окрашенным (в к.-л. из промежуточных цветов), т. е. Д. представляет собой частный случай плеохроизма (многоцветности). Д. обусловлен различием спектров поглощения кристалла для лучей, имеющих разное направление и поляризацию (подробнее см. в ст. Плеохроизм).

ДИХРОМАТЫ, бихроматы, двухромовокислые соли, соли двухромовой кислоты Н2Сr2О7, напр. К2Сr2О7. Большинство Д. имеет оранжево-красную окраску. Растворимость их, как правило, выше, чем соответствующих хроматов (солей хромовой кислоты Н2СrО4). Д., как и хроматы, в кислой среде являются сильными окислителями (6-валентный Сг восстанавливается до 3-валентного, напр. К2Сr2О7 + 14НС1 =
= 2КС1 + 2СrС13 + 3Сl2 + 7Н2O). Обладающая очень сильным окислительным действием смесь равных объёмов насыщенного на холоду раствора К2Сr2О7 и концентрированной H2SO4 (хромовая смесь) применяется в лабораториях для мытья химической посуды.

ДИХУА, второе название г. Урумчи, в сев.-зап. Китае.

ДИЦ (Diez) Фридрих Кристиан (15.3.1794, Гисен,-29.5.1876, Бонн), немецкий филолог-романист. Основоположник сравнительного изучения романских языков. Проф. ун-та в Бонне (с 1823). Осн. труды -грамматика и этимологич. словарь романских языков. Известен также исследованиями в области старопровансальской лит-ры, поэзии трубадуров.

Соч.: Etymologisches Worterbuch der romanischen Sprachen, 3 Ausg., Tl 1 - 2, Bonn, 1869-70; Grammatik der romanischenSprachen, Tl 1-3, Bonn, 1836-44; Leben und Werke der Troubadours, 2 Aufl., Amst., 1965; Die Poesie der Troubadours, 2 Aufl., Lpz., 1883.

ДИЦГЕН (Dietzgen) Иосиф (9.12.1828, Бланкенберг, -15.4.1888, Чикаго), немецкий рабочий-кожевник, философ, самостоятельно пришедший к идее мате-риалистич. диалектики. Преследуемый за революц. деятельность, Д. в 1848 эмигрировал в США; жил в России (1864-1869), где работал мастером на кожевенном заводе в Петербурге. В 1869 вернулся в Германию. Филос. эрудицию приобрёл самообразованием. Материализм и атеизм Д. формировались гл. обр. под влиянием Л. Фейербаха, а после 1867-под воздействием К. Маркса и Ф. Энгельса. С 1869 Д. чл. С.-д. партии, организатор одной из секций 1-го Интернационала в Германии. В 1870-88 сотрудничал в с.-д. газетах Германии и США. Первый филос. опыт Д.-"Сущность головной работы человека" (1869, рус. пер. 1902) - получил высокую оценку Маркса и Энгельса. Д. принадлежит ряд работ по философии и политэкономии (см. "Мелкие философские статьи", 2 изд., 1913). Последние годы жизни Д. посвятил разработке гл. обр. теории познания. В своих произв. Д. выступал как воинствующий материалист, противник филос. метафизики и религии. Однако филос. построения Д. не всегда были последовательными, что в обстановке теоретич. борьбы внутри 2-го Интернационала дало философам махистского толка основание противопоставить "диц генизм" марксистской философии (см. В. И. Ленин, Полн. собр. соч., 5 изд., т. 18, с. 261). Так, в ряде случаев Д. формулировал тождество материи и сознания, априоризм отд. понятий, преувеличивал степень относительности знания, что приводило его к агностицизму. Диалектика Д. не сложилась в целостную систему; Д. не удалось раскрыть диалектику как теорию познания. Критикуя ошибки Д., Ленин высоко ценил его как одного из "...выдающихся социал-демократических писателей-философов Германии" (там же, т. 23, с. 117).

Соч.: Samtliche Schriften, Bd 1-3, Stuttg., 1920; Ausge-wahlte Schriften, В., 1954; в рус. пер.-Избранные философские сочинения, М., 1941. Лит.: М а р к с К. и Энгельс Ф., Соч., 2 изд., т. 1, 2, 3 (см. указатель имен); Андреев Н., Диалектический материализм и философия Иосифа Дицгена, "Современный мир", 1907, № 11; Волкова В., Иосиф Дицген, М., 1961.

ДИЦЕНТРА, диклитра, сердечки (Dicentra), род многолетних травянистых корневищных растений сем. ды-мянковых. Листья трижды тройчато-или перисторассечённые или сложные. Цветки сердцевидные, собраны в кисти, лепестков 4, из к-рых 2 наружных со шпорцем. Ок. 20 видов в Вост. Азии и Сев. Америке; в СССР 1 вид - Д. бродяжная (D. peregrina), встречающаяся на гольцах и обнажениях Вост. Сибири и Д. Востока. В цветоводстве используются Д. великолепная (D. spectabilis) с односторонней кистью крупных розовато-красных цветков, а также Д. красивая (D. for-mosa) и Д. исключительная (D. eximia).

И. Дицген.

Дицентра великолепная.

ДИЦИНОДОНТЫ (Dicynodontia), подотряд (или надсемейство) ископаемых зверообразных пресмыкающихся. Были широко распространены в конце пермского и начале триасового периодов. Размеры - от крысы до носорога. Череп массивный, зубы редуцированы, за исключением двух клыков; челюсти имели форму клюва, как у черепах. Вероятно, Д. были растительноядны. Остатки

Д. найдены па всех материках (кроме Австралии); особенно обильны они в верхнепермских отложениях Юж. Африки.

Лит.: Основы палеонтологии. Земноводные, пресмыкающиеся и птицы, М., 1964.

ДИЧЕНКО Михаил Петрович [27. 1 (8.2). 1863, г. Боярка, ныне Киевской обл.,-4.12.1932], советский астроном, специалист по астрометрии и теоре-тич. астрономии. С 1891 по 1898 астроном Пулковской обсерватории, где определил на меридианном круге положения

125 околополярных звёзд. С 1898 Д. астроном-наблюдатель Киевской обсерватории. В результате 34-летних наблюдений положений звёзд на меридианном круге Д. составил каталог зодиакальных звёзд. Кроме того, на основе произведённого им вновь наблюдения звёзд зоны Аргеландера исследовал движение Солнца.

ДИЧКИ, 1) в плодоводстве выращенные из семян молодые деревца (наз. сеянцами), используются для прививки в качестве подвоев. 2) В лесоводстве молодые 2-3-летние деревца, появившиеся из семян (т. н. самосев). ДИЧЬ, добываемые охотой птицы и звери, мясо к-рых употребляется в пищу. Кроме мяса, Д. даёт пух, перо, шкуры, рога. По охотничьей классификации птицы считаются пернатой, а звери четвероногой Д. Пернатую Д. по месту обитания делят на лесную, или боровую (рябчик, белая куропатка, тетерев, глухарь, фазан и др.), полевую и степную (серая и даурская куропатки, перепел, стрепет, дрофа, журавль-красавка, саджа и др.), водоплавающую (утки, гуси, лебеди и др.), болотную (кулики: вальдшнеп, бекас, дупель, гаршнеп и др.), горную (кам. куропатка, горная индейка, или улар, и др.). К четвероногой Д. относятся зайцы и многочисленные виды диких копытных (олени, степные и горные антилопы, горные козлы, бараны, кабаны и др.).

В СССР ежегодно добывается ок. 50 млн. шт. различной Д. В добыче пернатой Д. первостепенное значение имеет водоплавающая Д., широко распространённая на внутр. водоёмах страны и на о-вах Северного Ледовитого и Тихого океанов. Ежегодная (60-е гг. 20 в.) добыча этой Д. 25-30 млн. шт., осн. районы добычи - Зап. Сибирь, Казахстан, прибрежные районы и заливы Белого, Балтийского, Чёрного, Каспийского и Аральского морей. В лесной и лесостепной зонах Европ. части СССР, Зап. и Вост. Сибири ежегодно добывается 12-15 млн. шт. боровой Д. В Европ. части СССР, Зап. Сибири и Казахстане ежегодно отстреливают ок. 3 млн. болотных птиц (куликов); в целинных степях Казахстана и Забайкалья ок. 1 млн. шт. степной Д. Небольшое кол-во горной Д. (кам. куропаток и уларов) отстреливают в горах Кавказа, Копетдага, Тянь-Шаня и Алтая. Многие редкие виды пернатой Д. (лебеди, красно-зобая казарка, фламинго, чёрный и белый журавли, дрофа и др.) находятся под охраной, охота на них временно запрещена. Мясо пернатой Д.- высокопитательный диетич. продукт.

Из четвероногой Д. объектами охоты в СССР являются зайцы и многие виды диких парнокопытных. Ежегодно в стране добывают 5-6 млн. зайцев. Дикие парнокопытные - первоклассная (т. н. красная) Д. В результате мероприятий по установлению рациональных сроков охоты и норм отстрела, а также работ по акклиматизации и реакклиматизации численность диких копытных возросла к 1972 до 5-6 млн. голов (из к-рых ок. 400 тыс. голов - ежегодная добыча охотников). В тундре, лесотундре и значит, части тайги охотятся на дикого сев. оленя, ежегодная добыча к-рого до 30 тыс. голов. В лесной и лесостепной зонах добывают лося (ежегодная добыча 30-35 тыс. голов), благородных оленей - европ. оленя в Европ. части СССР, марала на Алтае и юге Вост. Сибири, марала и изюбра на Д. Востоке; косулю -в лесной зоне Европ. части СССР, в Сибири и на Д. Востоке; в горах Алтая, Саян, Вост. Сибири, в юж. Приморье успешно разводят безрогого маленького оленя кабаргу; в юж. Приморье успешно разводят пятнистых оленей, охота на к-рых временно запрещена (общее поголовье этих оленей в СССР ок. 40 тыс. голов). В степях и пустынях Ср. Азии и Казахстана охотятся на сайгака; в результате мер охраны численность его возросла до 1,2 млн. голов (ежегодная добыча 200-250 тыс. голов). Другие виды антилоп - горал, обитающий в горах Приморья, дзерен (степи Забайкалья), джейран (степи Ср. Азии и Закавказья), серна (Кавказ) являются довольно редкой Д. и охота на них временно запрещена. На кабанов охотятся в центр, обл. Европ. части СССР, в Прибалтике, на Украине, Кавказе, в Ср. Азии, Казахстане, на Д. Востоке, на Алтае, в Саянах и Приморском крае; ежегодная добыча кабанов 30-35 тыс. Из диких козлов осн. объектом охоты является сибирский козерог, обитающий в горах Тянь-Шаня, Алтая, Саян. Охота на др. виды козлов (кавказский тур, дагестанский тур, бе-зоаровый козёл, винторогий козёл) в большинстве районов временно запрещена. На диких баранов охотятся в горах Ср. Азии, Алтая, Камчатки, Закавказья; охота на них также временно запрещена до восстановления численности.

Мясо диких оленей, антилоп и др. копытных по питательности превосходит мясо домашних животных. Шкуры -отличное сырьё для выделки кож, замши. Из неокостеневших рогов пятнистого оленя, марала и изюбра (пантов) вырабатывают пантокрин. "Кабарожью струю" используют для изготовления различных препаратов в медицине и парфюмерии. Рога диких копытных идут на поделку украшений и сувениров.

По запасам Д. СССР занимает первое место в мире. Во всех странах мира Д. считается общенациональным достоянием, охрана к-рого, рациональное использование и расширенное воспроизводство контролируются гос-вом. Добывание Д. регулируется сроками и правилами охоты, устанавливаемыми гос. органами управления охотничьим х-вом. С целью обогащения охотничьей фауны проводится расселение различных видов Д.

В странах Зап. Европы из массовых видов Д. ежегодно добывают: св. 70 тыс. лосей, 140-150 тыс. благородных оленей, св. 1 млн. косуль, св. 100 тыс. кабанов, до 10 млн. зайцев, до 2 млн. серых куропаток, св. 5 млн. фазанов, св. 15 млн. уток и др. В США и Канаде, кроме ежегодно добываемых массовых видов Д. (белохвостые и чернохвостые амер. олени, вапити, дикий кролик, воротничко-вый рябчик, виргинский перепел, фазан, серая куропатка и др.), как и в европ. странах, широко практикуется пром. разведение пернатой Д. на фермах (фазан, каменная куропатка-кеклик, серая куропатка, кряква и др.) с последующим выпуском молодняка птиц в естественные угодья для доращивания. Проблемы ди-черазведения и охраны Д. ставятся в программу Междунар. конгрессов биологов-охотоведов (10-й конгресс в 1971, Париж). См. также статьи об отдельных видах Д. В. Ф. Гаврин.

ДИЭЛЕКТРИКИ, вещества, плохо про водящие электрич. ток. Термин "Д." (от греч. dia - через и англ, electric -электрический) введён М. Фарадеем для обозначения веществ, через к-рые проникают электрич. поля. В любом веществе, помещённом в электрич. поле, составляющие его электрич. заряды (электроны, атомные ядра) испытывают силы со стороны этого поля. В результате часть зарядов направленно перемещается, образуя электрический ток. Остальные же заряды перераспределяются так, что "центры тяжести" положительных и отрицательных зарядов смещаются друг относительно друга. В последнем случае говорят о поляризации вещества. В зависимости от того, какой из этих двух процессов - электропроводность или поляризация - преобладает, принято деление веществ на изоляторы (Д.) и проводники (металлы, электролиты, плазма). Электропроводность Д. по сравнению с металлами очень мала. Их удельное сопротивление р порядка 108-1017 ом*см, а у металлов р ~ 10-6-10-4ом*см. Существует и промежуточный класс - полупроводники, свойства к-рых определяются процессами как электропроводности, так и поляризации.

Количеств, различие в электропроводности твёрдых Д. и металлов классич. физика пыталась объяснить тем, что в металлах есть свободные электроны, а в Д. все электроны связаны, т. е. принадлежат отдельным атомам, и электрич. поле не отрывает, а лишь слегка смещает их. Однако такое объяснение неточно. Как показывает совр. квантовомеханич. теория, твёрдое тело представляет собой как бы гигантскую "молекулу", где каждый электрон принадлежит всему кристаллу в целом. Это в одинаковой степени справедливо и для Д., и для металлов. Причиной различного поведения электронов в металле и в Д. является различный характер распределения электронов по уровням энергии.

Энергия электронов в твёрдом теле не может иметь произвольного значения. Области энергий, к-рыми электрон может обладать (разрешённые зон ы), чередуются с интервалами энергий, к-рые электрон не может принимать (запрещённые зон ы). Т. к., с одной стороны, электроны стремятся занять уровни с наименьшей энергией, а с др. стороны, в одном состоянии может находиться только один электрон, то электроны заполняют энергетич. уровни от нулевого до нек-poro максимального. В Д. верхний заполненный электронами энергетич. уровень совпадает с верх, границей одной из разрешённых зон (рис. 1). В металлах же верхний заполненный электронами энергетич. уровень лежит внутри разрешённой зоны (см. Твёрдое тело).

Для того чтобы в твёрдом теле под действием электрич. поля возник электрич. ток (направленное движение электронов), необходимо, чтобы часть электронов могла увеличивать свою энергию под действием поля, т. е. переходить с нижних энергетич. уровней на более высокие. В металле такой переход возможен, т. к. к заполненным уровням непосредственно примыкают свободные. В Д. же ближайшие свободные уровни отделены от заполненных запрещённой зоной, к-рую электроны под действием обычных не слишком сильных электрич. полей преодолеть не могут. В Д. действие электрич. поля сводится к перераспределению электронной плотности, к-рое приводит к поляризации Д. Распределение электронов по уровням энергии в полупроводниках и Д. сходно. Полупроводник отличается от Д. лишь более узкой запрещённой зоной. Поэтому при низких темп-pax свойства полупроводников и Д. близки, а при повышении темп-ры электропроводность полупроводников возрастает и становится заметной. Резкой грани между Д. и полупроводниками провести нельзя. Вещества с шириной запрещённой зоны ДЕ < 2-3 эв относят к полупроводникам, а с ДЕ > 2-3 эв - к Д.

Выше шла речь о твёрдых Д. Однако Д. могут быть также жидкости (см. Жидкие диэлектрики) и газы. В обычных условиях все газы состоят в основном из нейтральных атомов и молекул и поэтому не проводят электрич. тока, т. е. являются Д. С повышением темп-ры атомы и молекулы ионизируются и газ постепенно превращается в плазму, хорошо проводящую электрич. ток. Ниже речь будет идти о твёрдых Д.

Поляризация Д. Механизмы поляризации Д. могут быть различными. Они зависят от характера химической связи, т. е. распределения электронных плотностей в Д. Напр., в ионных кристаллах (каменная соль NaCl и др.), где электроны распределены так, что можно выделить отдельные ионы, поляризация является результатом сдвига ионов друг относительно друга (ионная поляризация, рис. 2, я), а также деформации электронных оболочек отдельных ионов (электронная поляриза-ц и я). Иными словами, поляризация в этом случае является суммой ионной и электронной поляризаций. В кристаллах с ковалентной связью (напр., в алмазе), где электронные плотности равномерно распределены между атомами, поляризация обусловлена гл. обр. смещением электронов, осуществляющих хим. связь (рис. 2, 6). В полярных Д. (напр., твёрдый сероводород) группы атомов - молекулы или радикалы представляют собой электрич. диполи, к-рые в отсутствии электрич. поля ориентированы хаотически, а под действием поля эти диполи ориентируются вдоль него (рис. 2, в). Такая ориентационная (дипольная) поляризация типична для полярных жидкостей и газов. Сходный механизм поляризации связан с перескоком под действием электрич. поля
[825-2.jpg]

Рис. 1. Уровни энергии электронов твёрдого тела группируются в разрешённые зоны (валентная зона и зона проводимости), разделённые запрещёнными зонами.

отдельных ионов из одних возможных положений равновесия в решётке в другие. Особенно часто такой механизм поляризации наблюдается в веществах с водородной связью (напр., у льда), где ионы водорода имеют неск. положений равновесия.
[825-3.jpg]

Рис. 2. Поляризация диэлектриков в поле Е: а-ионная и электронная поляризации ионных кристаллов; б-электронная поляризация ковалентных кристаллов; в-орнентационная поляризация полярных диэлектриков.

Поляризацию Д. характеризуют вектором поляризации P, к-рый представляет собой дипольный момент единицы объёма Д. Дипольный момент нейтральной в целом системы зарядов есть вектор, равный произведению расстояния между центрами тяжести положительных и отрицательных зарядов на величину заряда одного знака. Направлен этот вектор от центра тяжести отрицательных к центру тяжести положительных зарядов. Вектор P зависит от напряжённости электрич. поля Е. Поскольку сила, действующая на заряд, пропорциональна Е, то, естественно, что при малых полях величина P пропорциональна Е. Коэфф. пропорциональности x в соотношении P = xЕ наз. диэлектрической восприимчивостью Д. Часто оказывается удобным вместо вектора P пользоваться вектором электрич. индукции D = Е + 4пP.

Коэфф. пропорциональности Е в соотношении D = еЕ наз. диэлектрической проницаемостью. Ясно, что е = 1 + 4пx.

В вакууме х = 0 и е = 1 (в системе единиц СГСЕ). Значение е (или и) является основной характеристикой Д.

В анизотропных Д. (напр., в некуби ческих кристаллах) направление вектора поляризации P определяется не только направлением поля Е, но также выделенными направлениями среды, напр, осями симметрии кристалла. Поэтому вектор P будет составлять различные углы с вектором Е в зависимости от ориентации Е по отношению к осям симметрии. В результате вектор D будет определяться через вектор Е с помощью не одной величины е, а неск. величинами (в общем случае - шестью), образующими тензор диэлектрич. проницаемости (см. Анизотропия).

Д. в переменном поле. Если электрич. поле Е изменяется во времени, то величина поляризации в заданный момент времени t не определяется значением поля Е в тот же момент времени t. Поляризация Д. не успевает следовать за вызывающим её электрич. полем, т. к. смещения зарядов не могут происходить мгновенно (рис. 3).
[825-4.jpg]

Рис. 3 а, 6. Две характерные зависимости поляризации диэлектрика Р от времени t. Постоянное электрическое поле Е включается в момент времени t=0.

Т. к. любое переменное поле можно представить в виде совокупности полей, меняющихся по гармонич. закону (см. Фурье ряд, Фурье интеграл), то достаточно изучить поведение Д. в поле Е =Е0Х X cos wt, где w - частота переменного поля. Под действием такого поля величины D и P будут колебаться также гармонически с той же частотой со. Однако между колебаниями D и E будет существовать разность фаз, что вызвано отставанием поляризации P от поля Е.

Гармонический закон можно представить в комплексном виде: Е = Е0еiwt (см. Комплексная амплитуда). Тогда D = D0eiwt, причём амплитуды колебаний D к Е связаны соотношением: D0 = е (w) Е0. Диэлектрич. проницаемость е (со) в этом случае является комплексной величиной: е (w) = e1+ie2, и характеризуется двумя величинами e1 и e2, зависящими от частоты со пе-ременного поля. Абс. величина |е(w)| =КОРЕНЬ(е2+е2)= определяет амплитуду колебания D, а отношение (e1 / e2) = tg б определяет разность фаз б между колебаниями D к Е. Величина б наз. углом диэлектрических потерь. Это назв. связано с тем, что наличие разности фаз 8 приводит к поглощению энергии электрич. поля в Д. Действительно, работа, совершаемая полем Е в единице объёма Д., выражается интегралом ИНТЕГРАЛ EdР. Взятый за один период колебания, этот интеграл обращается в ноль, если Р и Е колеблются синфазно (б = 0) или в противофазе (б = п). В остальных случаях интеграл отличен от нуля. Доля энергии, теряемой за один период, равна e2. В постоянном электрич. поле (w = 0) е2 = 0, a e1 совпадает с е.

В переменных электрич. полях очень высоких частот (напр., электромагнитные волны оптич. диапазона) свойства Д. принято характеризовать преломления показателем п и поглощения показателем k (вместо e1 и e2). Коэфф. преломления п равен отношению скоростей распространения электромагнитных волн в Д. и в вакууме. Коэфф. поглощения k характеризует затухание элект-
[825-5.jpg]

Дисперсия диэлектрической проницаемости. Зависимость диэлектрич. проницаемости от частоты со переменного поля е (w) = e1 (w) + ie2 (w) наз. дисперсией диэлектрич. проницаемости. Характер дисперсии определяется процессом установления поляризации во времени. Если процесс установления поляризации - релаксационный (рис. 3, а), то дисперсия будет иметь вид, изображённый на рис. 4, а. Когда период колебания электрич. поля велик по сравнению с временем релаксации т (частота со мала по сравнению с 1/t), поляризация успевает следовать за полем и поведение Д. в переменном электрич. поле не будет существенно отличаться от его поведения в постоянном поле (т. е. e1 = e, e2= 0, как на рис. 3, а). При частотах w >> 1/t Д. не будет успевать поляризироваться, т. е. амплитуда P будет очень мала по сравнению с величиной поляризации Л в постоянном поле. Это значит, что е1 ~~ 1, а e2 ~ 0. Т. о., e1 с ростом частоты изменяется от е до 1. Наиболее резкое изменение e1 происходит как раз на частотах w ~ 1/t. На этих же частотах e2 проходит через максимум. Такой характер дисперсии Е (w) наз. релаксационным. Если поляризация в процессе установления испытывает колебания, как показано на рис. 3, б, то дисперсия Е (w) будет иметь вид, изображённый на рис. 4, 6. В этом случае характер дисперсии наз. резонансным.
[825-6.jpg]

Рис. 4. а-релаксационный характер дисперсии диэлектрической проницаемости е (w), соответствующий зависимости P(t), изображённой на рис. 3, а; б-резонансный характер дисперсии диэлектрической проницаемости e(w), _ соответствующий зависимости, изображённой на рис. 3, б.

В реальном веществе дисперсия e (w) имеет более сложный характер, чем на рис. 4. На рис. 5 изображена зависимость Е (w), характерная для широкого класса твёрдых Д. Из рис. 5 видно, что можно выделить неск. областей дисперсии в разных диапазонах частот. Наличие этих, обычно чётко разграниченных, областей указывает на то, что поляризация Д. обусловлена различными механизмами. Напр., в ионных кристаллах поляризацию можно представить как сумму ионной и электронной поляризаций. Типичные периоды колебаний ионов ~ 10-13 сек. Поэтому дисперсия e (w), обусловленная ионной поляризацией, приходится на частоты ~ 1013 гц (инфракрасный диапазон). Характер дисперсии обычно резонансный. При более высоких частотах ионы уже не успевают смещаться и весь вклад в поляризацию обусловлен электронами. Характерные периоды колебаний электронов определяются шириной запрещённой зоны Д. Когда энергия фотона hw (h - Планка постоянная) становится больше ширины запрещённой зоны, фотон может поглотиться, вызвав переход электрона через запрещённую зону. В результате электромагнитные волны на таких частотах (w ~ 1015гц -ультрафиолетовый диапазон) сильно поглощаются, т. е. резко возрастает величина e2. При меньших частотах (в частности, для видимого света) чистые однородные Д., в отличие от металлов, обычно прозрачны. В полярных Д. под действием электрического поля происходит ориентация диполей. Характерные времена установления поляризации при таком ориентационном механизме сравнительно велики: t ~ 10-6-10-8 сек (диапазон сверхвысоких частот). Характер дисперсии при этом обычно релаксационный. Т. о., изучая зависимость Е (w), можно получить сведения о свойствах Д. и выделить вклад в поляризацию от различных механизмов поляризации.
[825-7.jpg]

Рис. 5. Зависимость e1 твёрдого диэлектрика от частоты to поля Е.

Диэлектрическая проницаемость разных веществ. Статическое значение диэлектрич. проницаемости Е существенно зависит от структуры вещества и от внеш. условий (напр.,от темп-ры), обычно меняясь в пределах от 1 до 100-200 (у сегнетоэлектриков до 104-103, табл. 1).

Табл. 1. - Диэлектрическая проницаемость Е некоторых твёрдых диэлектриков

Диэлектрик

e 6,3
Рутил, TiO2 (вдоль оптич. оси)

170
Алмаз, С

5,7
Кварц, SiO2

4,3
Лёд, Н2О(при -5°С)

73
Титанат бария, ВаТiO3(при 20 °С перпендикулярно оптич. оси)

4000

Такой разброс значений е объясняется тем, что в разных веществах осн. вклад в Ё на низких частотах дают различные механизмы поляризации. В ионных кристаллах наиболее существенна ионная поляризация. На высоких частотах (w => 1014 гц) значения е (w) для разных ионных кристаллов близки к 1. Это обусловлено тем, что вклад от электронной поляризации, к-рая для этих частот только и имеет место, невелик. В ковалентных кристаллах, где основной вклад в поляризацию даёт перераспределение валентных электронов, ста-тич. проницаемость Е мало отличается от высокочастотной e1(w). При этом величина Е зависит от жёсткости ковалент-ной связи, к-рая тем меньше, чем уже запрещённая зона Д. Напр., для алмаза (Д = 5,5 эв) e = 5,7. Для кремния (Д = 1,1 эв) e = 12. Большой вклад в EI даёт ориентационная поляризация.

Поэтому в полярных Д. е сравнительно велика, напр, для воды е = 81.

Методы измерения диэлектрич. проницаемости различны для разных частот (см. Диэлектрические измерения).

Поляризация диэлектриков в отсутствии электрического поля. До сих пор рассматривались Д., в к-рых поляризация возникала под действием внеш. электрич. поля. Однако в ряде твёрдых Д. наличие поляризации может быть вызвано др. причинами. В пироэлектри-ках поляризация существует и без электрич. поля. В таких кристаллах заряды располагаются столь несимметрично, что центры тяжести зарядов противоположного знака не совпадают, т. е. Д. спонтанно (самопроизвольно) поляризован. В пьезоэлектриках поляризация возникает при деформировании кристалла. Это связано с особенностями строения кристал-лич. решётки таких веществ (см. Пьезоэлектричество).

Большой интерес представляют сегне-тоэлектрики, к-рые являются особой разновидностью пироэлектриков. Спонтанная поляризация сегнетоэлектриков существенно меняется, в отличие от обычных пироэлектриков, под влиянием внешних воздействий (темп-ры, электрич. поля). Сегнетоэлектрики поэтому характеризуются очень большими значениями Е, сильной нелинейной зависимостью P от Е, доменной структурой (см. Домены) и наличием спонтанной поляризации лишь в определённом интервале температур. В этом смысле диэлектрич. свойства сегнетоэлектриков аналогичны магнитным свойствам ферромагнетиков.

Поляризация в отсутствии электрич. поля может наблюдаться также в нек-рых веществах типа смол и стёкол, наз. элект-ретами. Поляризованные при высоких темп-pax, а затем охлаждённые, электре-ты сохраняют достаточно долгое время поляризацию без поля.

Электропроводность Д. мала, однако всегда отлична от нуля (табл. 2). Носителями тока в Д. могут быть электроны и ионы. Электронная проводимость Д. обусловлена теми же причинами, что и электропроводность полупроводников. В обычных условиях, однако, электронная проводимость Д. мала по сравнению с ионной. Ионная проводимость может быть обусловлена перемещением как собств. ионов, так и примесных. Возможность перемещения ионов по кристаллу тесно связана с наличием дефектов в кристаллах. Если, напр., в кристалле есть вакансии (незанятые узлы кристаллич. решётки), то под действием поля ион может перескочить на соседнее с ним вакантное место. Во вновь образовавшуюся вакансию может перескочить следующий ион и т. д. В итоге происходит движение вакансий, к-рое приводит к переносу заряда через весь кристалл. Перемещение ионов может происходить и в результате перескоков ионов по междоузлиям. С ростом темп-ры ионная проводимость сильно возрастает. Заметный вклад в электропроводность Д. может вносить поверхностная проводимость.

Пробой. Электрич. ток в Д. пропорционален напряжённости электрич. поля Е (Ома закон). Однако в достаточно сильных полях ток нарастает быстрее, чем по закону Ома. При нек-ром критич. поле Епр наступает электрич. пробой Д. Величина Епр наз. электрической прочностью Д. (табл. 2). При пробое однородное токовое состояние становится неустойчивым и почти весь ток начинает течь по узкому каналу. Плотность тока } в этом канале достигает очень больших значений, что приводит к необратимым изменениям в Д.

Табл. 2. - Удельное сопротивление р и электрическая прочность Епр некоторых твёрдых диэлектриков, используемых в качестве изоляционных материалов

Диэлектрический материал

р, ом* см

Епр, в/см
Кварцевое стекло

1016-1018

2-3*105
Полиэтилен

1015-1016

4*105
Слюда

1014- 1 016

1-2*10"
Электрофарфор

1013-1014

3*105
Мрамор

108- 109

2-3*105

На рис. 6 приведена зависимость плотности тока j от напряжённости электрич. поля Е, рассчитанная в предположении, что ток однороден по сечению образца. Эта зависимость может быть описана соот-
[825-8.jpg]

тивление р не постоянная величина, как в законе Ома, а зависит от j. Дифференцируя это соотношение, получим выражение:
[825-9.jpg]

может стать отрицательной (дифференциальное отрицательное сопротивление). Состояние с отрицательным дифференциальным сопротивлением является неустойчивым и приводит к образованию канала тока при Е = Епр.
[825-10.jpg]

Рис. 6. Зависимость плотности тока j от напряжённости электрич. поля Е в диэлектрике; пунктир соответствует неустойчивым состояниям.

В твёрдых Д. различают тепловой и электрич. пробой. При тепловом пробое с ростом j растёт джоулево тепло и, следовательно, темп-pa Д., что приводит к увеличению числа носителей тока п. В результате р падает. При электрич. пробое с ростом j также возрастает число носителей и, а р с увеличением п падает.

В реальных Д. большую роль при пробое играют всегда присутствующие неоднородности. Они способствуют пробою, т. к. в местах неоднородности Е может локально возрасти. Необратимые изменения в Д., связанные с образованием токового канала при пробое, могут быть разного характера. Напр., в Д. образуется сквозное отверстие или Д. проплавляется по каналу. В канале могут протекать хим. реакции, напр, в органич. Д. осаждается углерод, в ионных Д. выпадает металл (металлизация канал а).

Электрич. прочность жидких Д. в сильной степени зависит от чистоты жидкости. Наличие примесей и загрязнений существенно понижает Епр. Для чистых, однородных жидких Д. ЕПР близка к ЕПР твёрдых Д.

Пробой в газах связан с механизмом ударной ионизации и проявляется в виде электрического разряда в газах.

Нелинейные свойства Д. Поляризация Д., как указывалось выше, пропорциональна напряжённости электрич. поля. Однако такая линейная зависимость справедлива только для электрич. полей, значительно меньших внутрикристалли-ческих полей Екр ~ 108в/см (см. Кристаллическое поле). Т. к. обычно ЕПР" "Екр, то в большинстве Д. не удаётся наблюдать нелинейную зависимость Р(Е) в постоянном электрич. поле. Исключение составляют Сегнетоэлектрики, где в определённом интервале темп-р (в сегнетоэлект-рич. области и вблизи точек фазовых переходов) наблюдается сильная нелинейная зависимость Р(Е).

При высоких частотах электрич. прочность Д. повышается, поэтому нелинейные свойства любых Д. проявляются в высокочастотных полях больших амплитуд. В луче лазера могут быть созданы электрич. поля напряжённости 108 в/см. В таких полях становятся очень существенными нелинейные свойства Д., что позволяет осуществить преобразование частоты света, самофокусировку света и др. нелинейные эффекты (см. Нелинейная оптика).

Д. в науке и технике используются прежде всего как электроизоляционные материалы. Для этого необходимы Д .с большим удельным сопротивлением, высокой электрической прочностью и малым углом диэлектрических потерь. Д. с высоким значением е используются как конденсаторные материалы. Ёмкость конденсатора, заполненного Д., возрастает в е раз. Пьезоэлектрики широко применяются для преобразований звуковых колебаний в электрические и наоборот (приёмники и излучатели ультразвука, звукосниматели и др., см. Пьезоэлектрический датчик). Пироэлектрики служат для индикации и измерения интенсивности инфракрасного излучения. Сегнетоэлектрики применяют в радиотехнике для создания нелинейных элементов, входящих в состав различных схем (усилители, стабилизаторы частоты и преобразователи электрических сигналов, схемы регулирования и др.).

Д. используются и в оптике. Чистые Д. прозрачны в оптич. диапазоне. Вводя в Д. примеси, можно окрасить его, сделав непрозрачным для определённой области спектра (фильтры). Диэлектрические кристаллы используются в квантовой электронике (в квантовых генераторах света - лазерах и квантовых усилителях СВЧ). Ведутся работы по использованию Д. в вычислительной технике и т. п.

Лит.: Феинман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [в. 5] - Электричество и магнетизм, пер. с англ., М., 1966; Калашникове. Г., Электричество, 2 изд., М., 1964; физический энциклопедический словарь, т. 1, М., 1960; Сканави Г. И., Физика диэлектриков (Область слабых полей), М. -Л., 1949; его же. Физика диэлектриков (Область сильных полей), М.,1958; Фрёлих Г., Теория диэлектриков, М., 1960; Xиппeль А. Р., Диэлектрики и волны, пер. с англ., М., 1960; Же л у дев И. С., Физика кристаллических диэлектриков, М., 1968. А-П.Леванюк, Д. Г. Санников.

ДИЭЛЕКТРИЧЕСКАЯ АНТЕННА, антенна в виде отрезка диэлектрич. стержня, возбуждённого радиоволноводом или штырём коаксиального кабеля. В стержне Д. а. (рис.) возбуждается волна особой структуры (т. н. поверхностная волна), распространяющаяся вдоль его оси, и, как следствие, на поверхности стержня возникают тангенциальные (касательные к поверхности) составляющие электрич. и магнитного полей, фаза к-рых меняется ло закону бегущей волны.

[825-11.jpg]

Диэлектрическая антенна: 1 - конусообразный стержень; 2 - штырь, излучающий радиоволны в стержень; 3 -коаксиальный кабель. Стрелками показано направление излучения антенны.

По существу Д. а. представляет собой бегущей волны антенну, состоящую из элементарных электрич. и магнитных вибраторов. Её максимум излучения, как и всякой антенны бегущей волны, совпадает с осью стержня. Характер излучения Д. а. зависит от фазовой скорости распространения поверхностной волны. С увеличением диаметра стержня и диэлектрич. проницаемости материала, из к-рого он выполнен, фазовая скорость уменьшается. Чем меньше фазовая скорость, тем больше длина стержня, при к-рой коэфф. направленного действия (КНД)антенны максимален (т. н. оптимальная длина), и больше максимально возможный КНД. По мере уменьшения фазовой скорости или приближения её к скорости света в окружающей среде (воздухе) диэлектрич. стержень теряет волноводные свойства. Это приводит к резкому спаданию поля к концу стержня, увеличению излучения в окружающую Д. а. среду непосредственно из открытого конца радиоволновода и уменьшению эффективности Д. а. Диаметр и материал стержня обычно выбирают так, чтобы фазовая скорость была не очень близкой к скорости света (не более 0,95-0,96 скорости света). При такой фазовой скорости оптимальная длина равна 12 длинам излучаемой волны и КНД равен ~ 100. Стержень Д. а. изготовляют из диэлектрич. материалов с малым затуханием электромагнитных волн в них - полистирол, фторопласт и др. Д. а. применяют преим. на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах.

О. Н. Терёшин, Г. К. Галимов.

ДИЭЛЕКТРИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ, величина, характеризующая способность диэлектриков к поляризации. Количественно Д. в. - коэфф. пропорциональности х в соотношении Р = хE, где Е - напряжённость электрич. поля, Р - поляризация диэлектрика (диполь-ный момент единицы объёма диэлектрика). Д. в. характеризует диэлектрич. свойства вещества так же, как и диэлектрическая проницаемость е, с к-рой она связана соотношением: 8= 1 + 4пх. Лит. см. при ст. Диэлектрики.

ДИЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ, устаревшее название диэлектрической проницаемости.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина, характеризующая диэлектрические свойства среды - её реакцию на электрическое поле. В соотношении D = еЕ, где Е - напряжённость электрич. поля, D - электрич. индукция в среде, Д. п. - коэффициент пропорциональности Е. В большинстве диэлектриков при не очень сильных полях Д. п. не зависит от поля Е. В сильных электрич. полях (сравнимых с внутриатомными полями), а в нек-рых диэлектриках (напр., сегнетоэлектриках) в обычных полях зависимость D от Е - нелинейная (см. Нелинейная, оптика).

Величина Д. п. существенно зависит от типа вещества и от внешних условий (темп-ры, давления и т. п.). В переменных электрических полях Д. п. зависит от частоты поля Е (см. Диэлектрики). О методах измерения Д. п. см. Диэлектрические измерения.

Лит. см. при ст. Диэлектрики, Электроизоляционные материалы.

ДИЭЛЕКТРИЧЕСКАЯ ЭЛЕКТРОНИКА, область физики, занимающаяся исследованием и практич. применением явлений, связанных с протеканием электрич. токов в диэлектриках. Концентрация электронов проводимости или к.-л. других свободных носителей заряда в диэлектриках (дырок, ионов) пренебрежимо мала. Поэтому до недавнего времени диэлектрики в электро- и радиотехнике использовались только как изоляторы (см. Электроизоляционные материалы). Исследования тонких диэлектрич. плёнок показали, что при контакте с металлом в диэлектрик переходят электроны или дырки, в результате чего у контакта в тонком слое диэлектрика появляются в заметном количестве свободные носители заряда. Если диэлектрик массивный, то весь его остальной объём действует по-прежнему как изолятор, и поэтому в системе металл-диэлектрик-металл ток ничтожно мал. Если же между двумя металлич. электродами поместить тонкую диэлектрич. плёнку (обычно 1-10 мкм), то эмитируемые из металла электроны заполнят всю толщу плёнки и напряжение, приложенное к такой системе, создаст ток через диэлектрик.

Теоретически возможность протекания управляемых эмиссионных токов через диэлектрик была предсказана англ, физиками Н. Моттом и Р. Гёрни в 1940. Д. э. изучает протекание токов, ограниченных пространственным зарядом в диэлектриках, при термоэлектронной эмиссии из металлов и полупроводников, при туннельной эмиссии и т. д.

Простейший прибор Д. э. - диэлектрич. диод представляет собой сандвич-структуру металл - диэлектрик - металл (рис. 1). Он во многом аналогичен электровакуумному диоду и поэтому наз. аналоговым.
[825-12.jpg]

Его выпрямляющее действие обусловлено различием работы выхода электронов из электродов, изготовленных из разных металлов. Для одного из электродов - истока (аналог катода) применяется металл, у к-рого работа выхода электронов в данный диэлектрик мала (доли эв); для второго (сток - аналог анода) -металл с большой работой выхода (1-2 эв). Поэтому в одном направлении возникают значительные токи, а в обратном направлении токи исчезающе малы. Коэффициент выпрямления диэлектрического диода достигает значений 104 и выше.

Создание диэлектрич. триода связано с технологич. трудностями размещения управляющего электрода - затвора (аналог сетки в электровакуумном триоде) в тонком слое диэлектрика между истоком и стоком. В одном типе триода эмиссия происходит из полупроводника п, обладающего электронной проводимостью, в высокоомный полупроводник р с дырочной проводимостью, который играет роль диэлектрика (рис. 2). Низкоомные области, образованные из полупроводника Р+с высокой дырочной проводимостью, исполняют роль, во многом сходную с ролью металлич. ячеек сетки электровакуумного триода. Подаваемое на эти области внешнее напряжение управляет величиной тока, протекающего между истоком и стоком.

[825-13.jpg]

Рис. 2. Горизонтальный разрез диэлектрического триода со встроенной сеткой; п - полупроводник, обладающий электронной проводимостью; р - диэлектрик (высокоомный полупроводник с дырочной проводимостью), в к-рый происходит эмиссия электронов; Р+ -низкоомные области полупроводника с дырочной проводимостью, через к-рые электроны не проходят.

В другом типе триода (рис. 3) затвор помещён вне диэлектрика CdS; его роль сводится к изменению распределения потенциала в диэлектрике, от чего существенно зависит величина тока. физ. картина явлений в этих триодах значительно сложнее и существенно отличается от протекания эмиссионных токов в вакууме. Распространение получили триоды с изолированным затвором МОП (металл -окисел - полупроводник) или МДП (металл - диэлектрик - полупроводник).

[825-14.jpg]

Рис. 3. Структура триода с изолированным затвором.

В приборах Д. э. удачно сочетаются достоинства полупроводниковых и электровакуумных приборов и отсутствуют многие их недостатки. Приборы Д. э. микроминиатюрны. Создание эмиссионных токов в диэлектриках не требует затрат энергии на нагрев эмитирующего электрода и не сталкивается с проблемой отвода тепла. Диэлектрич. приборы малоинерционны, обладают хорошими частотными характеристиками, низким уровнем шумов, мало чувствительны к изменениям температуры и радиации.

Лит.: Мотт Н., Герни Р., Электронные процессы в ионных кристаллах, пер. с англ., М., 1950; Адирович Э. И., Электрические поля и токи в диэлектриках, "Физика твердого тела", 1960, т. 2, в. 7, с. 1410; его же, Эмиссионные токи в твердых телах и диэлектрическая электроника, в сб.: Микроэлектроника, под ред. Ф. В. Лукина, в. 3, М., 1969, с. 393. Э. И. Адирович.

ДИЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерения величин, характеризующих свойства диэлектриков в постоянном и переменном электрич. полях. К Д. и. относятся измерения диэлектрич. проницаемости е в постоянных и переменных полях, диэлектрич. потерь, удельной электропроводности в постоянном электрич. поле, электрич. прочности.

В случае твёрдых диэлектриков Д. и. часто сводятся к измерению ёмкости С плоского электрич. конденсатора, между пластинами к-рого помещён исследуемый
[825-15.jpg]
(d - толщина диэлектрич. образца, S -площадь его боковой грани, k - коэфф. пропорциональности) находят диэлектрич. проницаемость е. В случае жидкостей и газов измеряют ёмкость системы электродов в вакууме (С0) и в данном веществе (Се), а затем определяют е из соотношения: е = Се/Со.

Методы измерения ёмкости и диэлектрич. потерь различны для разных частот электрич. поля. В постоянном поле и при низких частотах (десятые доли гц) ёмкость, как правило, определяют путём измерений зарядного или разрядного токов конденсатора с помощью баллистического гальванометра (рис. 1).

В области частот от десятых гц до 107 гц, помимо С, существенно измерение диэлектрических потерь, мерой к-рых является тангенс угла диэлектрических потерь tgб. С и tgб измеряют с помощью мостовых схем, в частности мостов Шеринга.
[825-16.jpg]

Рис. 1. Измерения диэлектрической проницаемости при помощи баллистического гальванометра G.

В высокочастотной области (от 105 до 108 гц) для измерения ёмкости Се и диэлектрической проницаемости е применяют гл. обр. резонансные методы (рис. 2). Колебательный контур, содержащий образцовый конденсатор (см. Емкости меры), настраивается в резонанс, и определяется соответствующая резонансу величина ёмкости С'. Затем параллельно образцовому конденсатору присоединяют конденсатор с диэлектриком Се, и контур снова настраивается в резонанс. Во втором случае ёмкость С" образцового конденсатора будет меньше. Ёмкость конденсатора, заполненного диэлектриком Се, определяется по формуле: Се = С'-С". (1)

Различные резонансные методы отличаются друг от друга по способу определения tgб. В методе замещения диэлектрик заменяется эквивалентной схемой, состоящей из ёмкости и сопротивления.

[825-17.jpg]

Рис. 2. Измерения ёмкости Се и диэлектрической проницаемости е резонансным методом. Катушка индуктивности L и образцовый конденсатор С образуют замкнутый контур, слабо связанный с генератором переменного тока.

Подбирается такое сопротивление R, к-рое, будучи включено последовательно или параллельно образцовому конденсатору С, ёмкость к-рого берётся равной ёмкости диэлектрика Се, даёт такой же резонансный ток в контуре, как и образец диэлектрика. Метод расстройки контура основан на том, что ширина резонансной кривой контура определяется его добротностью Q, связанной с тангенсом угла потерь диэлектрика соотношением:

[825-18.jpg]

Ёмкость и диэлектрич. потери определяют также методом куметра. В данной области частот можно применять также метод биений.

В области сверхвысоких частот (от 108 до 1011 гц) Д. и. основаны на использовании объёмных резонаторов и радиоволноводов, а также на закономерностях распространения электромагнитных волн в свободном пространстве. В случае газообразных диэлектриков измеряют резонансную частоту w0 и добротность Qo объёмного резонатора (рис. 3), когда в нём создан вакуум, и те же величины wе и Qе, когда он целиком заполнен диэлектриком.

[825-19.jpg]

Рис. 3. Волноводные установки для измерения е и tgS газов.

При этом имеют место соотношения:
[825-20.jpg]

В случае жидких и твёрдых диэлектриков, если они целиком заполняют резонатор, получаются гораздо большие изменения резонансной частоты и добротности. Кроме того, если диэлектрич. потери велики, то добротность резонатора становится весьма малой величиной. Это нарушает справедливость формул (3) и (4). Поэтому применяют частичное заполнение резонатора диэлектриком, чаще всего имеющим форму диска или стержня.

Другой метод Д. и. в области СВЧ состоит в том, что в радиоволноводе устанавливаются бегущая или стоячая электромагнитные волны. Для волновода, заполненного диэлектриком, длина волны Хе равна:
[825-21.jpg]

где Х0 - длина волны в свободном пространстве, Хкр - критич. (предельная) длина волны, зависящая от типа волн и размеров поперечного сечения волновода. Из формулы (5) можно определять Е. При введении диэлектрика в волновод изменяются условия распространения волн и происходит поглощение энергии электромагнитного поля. Это позволяет определить tgб.

Существуют два основных метода измерения е и tg6 с помощью волновода. Первый основан на наблюдении картины стоячих волн в волноводе, нагружённом известным сопротивлением. Второй - на наблюдении поглощения волн, проходящих через диэлектрик. В случае газов, к-рые имеют е~~1 и малые диэлектрич. потери, Е и tgб определяют с помощью установки, схематически изображённой на рис. 3. В среднем участке волновода, отгороженном слюдяными окнами, создаётся вакуум, а затем туда вводится газ. При этом в согласии с формулой (5) длина волны уменьшается и положение минимумов стоячей волны смещается. Д. и. жидкостей и твёрдых тел, имеющих е не= 1, осложняются отражением волн на границе воздух - диэлектрик. В этих условиях наблюдают картину стоячих волн на входе заполненного диэлектриком волновода с помощью измерительной линии. В области миллиметровых, инфракрасных и световых волн измеряют коэфф. отражения или преломления и коэфф. поглощения диэлектрика, откуда находят е и tgб.

Методы измерения удельной электропроводности диэлектриков а в постоянном поле существенно не отличаются от аналогичных методов для металлов и полупроводников. Для точных измерений очень малых а используют постоянного тока усилитель.

Измерения электрич. прочности Епр основаны на измерении напряжения Епp, к-рое соответствует наступлению диэлектрич. пробоя:
[825-22.jpg]

где d - расстояние между электродами. Лит.: Сканави Г. И., Диэлектрическая поляризация и потери в стеклах и керамических материалах с высокой диэлектрической проницаемостью, М. - Л., 1952; Карандеев К. Б., Мостовые методы измерений, К., 1953; Xиппель А. Р., Диэлектрики и их применение, пер. с англ., М. -Л., 1959; Браун В., Диэлектрики, пер. с англ., М., 1961; Измерения на сверхвысоких частотах, пер. с англ., под ред. В. Б. Штейншлейгера, М., 1952.

А. Н. Губкин.

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ, часть энергии переменного электрич. поля в диэлектрич. среде, к-рая переходит в тепло. При изменении значения и направления напряжённости Е электрич. поля диэлектрич. поляризация также меняет величину и направление (см. Диэлектрики); за время одного периода переменного поля поляризация дважды устанавливается и дважды исчезает. Если диэлектрик построен из молекул, к-рые представляют собой диполи (полярные молеку-л ы) или содержит слабо связанные ионы, то ориентация таких частиц или смещение в электрич. поле (ориентационная поляризация) требуют определённого времени (время релаксации). В результате максимум поляризации не совпадает во времени с максимумом напряжённости поля, т. е. имеется сдвиг фаз между напряжённостью поля и поляризацией. Благодаря этому имеется также сдвиг фаз между напряжённостью электрического поля Е и электрич. индукцией D, к-рый и обусловливает потери энергии We. Переходя к векторному изображению величин, можно сказать, что вектор электрич. индукции отстаёт' от вектора электрич. поля на нек-рый угол 6, к-рый носит назв. угла диэлектрических потерь. Когда молекулы или ионы ориентируются полем, они испытывают соударения с др. частицами, при этом рассеивается энергия. Если время релаксации г во много раз больше, чем период Т изменения приложенного поля, то поляризация почти не успевает развиться и Д. п. очень малы. При малых частотах, когда время релаксации т значительно меньше периода Т, поляризация следует за полем и Д. п. также малы, т. к. мало число переориентации в единицу времени. Д. п. имеют макс. значение, когда выполняется равенство w = l/t, где w - круговая

[825-23.jpg]

Описанный механизм релаксац. Д. п. имеет место в твёрдых и жидких диэлектриках, содержащих полярные молекулы или слабо связанные ионы. Величина релаксационных Д. п. в жидкости зависит от её вязкости, от темп-ры и от частоты приложенного поля. Для невязких жидкостей (вода, спирт) эти потери проявляются в сантиметровом диапазоне длин волн. В полимерах, содержащих полярные группы, возможна ориентация как отдельных полярных радикалов, так и более или менее длинных цепочек молекул.

В диэлектриках с ионной и электронной поляризацией вещество можно рассматривать как совокупность осцилляторов, к-рые в переменном электрич. поле испытывают вынужденные колебания, сопровождающиеся рассеянием энергии (рис. 1). Однако если частота электрич. поля гораздо больше или меньше собственной частоты осцилляторов, то рассеяние

[825-24.jpg]

Рис. 1. Модель диэлектрика, состоящего из осцилляторов - упруго связанных электрических зарядов.

энергии и, следовательно, Д. п. незначительны. При частотах, сравнимых с собственной частотой осцилляторов, рассеяние энергии и Д. п. We велики и имеют максимум при равенстве этих частот со = w0 (рис. 2). При электронной поляризации максимум потерь соответствует оптич. диапазону частот. В диэлектриках, построенных из ионов (напр., щёлочно-га-лоидные кристаллы), поляризация обусловлена упругим смещением ионов и максимум потерь имеет место в инфракрасном диапазоне частот (1012-1013 гц).
[825-25.jpg]

Рис. 2. Зависимость We(w) для диэлектрика, состоящего из одинаковых осцилляторов, изображённых на рис. 1.

Т. к. реальные диэлектрики обладают нек-рой электропроводностью, то имеются потери энергии, связанные с протеканием в них электрич. тока (джоулевы потери), величина к-рых не зависит от частоты.

Величина Д. п. в диэлектрике, находящемся между обкладками конденсатора, определяется соотношением:
[825-26.jpg]

где U - напряжение на обкладках конденсатора, С - ёмкость конденсатора, tgS - тангенс угла диэлектрических потерь. Д. п. в 1 см3 диэлектрика в однородном поле Е равны:
[825-27.jpg]

где Е - диэлектрическая проницаемость.

Произведение Е tg б наз. коэфф. Д. п. Уменьшение величины Д. п. имеет большое значение в производстве конденсаторов и электроизоляционной технике. Большие Д. п. используются для диэлектрического нагрева в электрич. поле высокой частоты.

Лит.: Сканави Г. И., Физика диэлектриков (Область слабых полей), М. -Л., 1949; Браун В., Диэлектрики, пер. с англ., М., 1961; Хиппель А. Р., Диэлектрики и их применение, пер. с англ., М., 1959; физический энциклопедический словарь, т. 1, М., 1960, с. 643. Е. А. Конорова.

ДИЭЛЕКТРИЧЕСКИЙ ВОЛНОВОД, радиоволновод, состоящий целиком из диэлектрич. материалов (полиэтилена, полистирола и др.).

ДИЭЛЕКТРИЧЕСКИЙ НАГРЕВ, нагрев диэлектриков в переменном электрич. поле. При наложении переменного электрич. поля в диэлектриках появляется ток смещения, вызванный их поляризацией, и ток проводимости, обусловленный наличием в диэлектрике свободных электрически заряженных частиц. Протекание суммарного тока приводит к выделению тепла. Выделяющаяся удельная мощность пропорциональна напряжённости (Е) и частоте (f) электрич. поля, а также диэлектрич. постоянной (Е) и тангенсу угла потерь (tg б) диэлектрика. При частотах 0,3-300 Мгц Д. н. осуществляется в поле конденсатора (источник энергии - ламповые генераторы), при сверхвысоких частотах - в поле объёмного резонатора или излучателя (источник -магнетроны). Напряжённость электрич. поля в промышленных установках Д. н. 5-3000 кв/м. Достоинства установок Д. н.: высокая скорость нагрева; равномерный нагрев материалов с низкой теплопроводностью; осуществление местного и избирательного нагрева и др. Области применения Д. н. - сушка материалов (древесины, бумаги, керамики и др.); нагрев пластмасс перед прессованием; сварка пластмасс; склеивание древесины и т. д.

Лит.: Высокочастотный нагрев диэлектриков и полупроводников, 2 изд., М. -Л., 1959; Высокочастотная электротермия. Справочник, М. -Л., 1965; Брицын Н. Л., Нагрев в электрическом поле высокой частоты, 3 изд., М. -Л., 1965. А. Б. Кувалдин.

ДИЭЛЕКТРИЧЕСКИЙ УСИЛИТЕЛЬ, усилитель электрич. колебаний, в к-ром усиление создаётся изменением ёмкости конденсатора с сегнетоэлектриком при изменении подводимого к нему напряжения. В типовом каскаде усиления Д. у. (рис.) подводимые электрич. колебания изменяют ёмкость конденсатора С и, следовательно, его реактивное сопротивление, что вызывает модуляцию колебаний, создаваемых генератором Г. Полученные на концах сопротивления нагрузки Z, модулированные колебания затем детектируются диодом D. В результате детектирования на выходе Д. у. возникают колебания, совпадающие по форме с подводимыми, но большей амплитуды.

[825-28.jpg]

Схема каскада усиления диэлектрического усилителя: Uвх- подводимое напряжение сигнала; Др-высокочастотный дроссель, защищающий источник усиливаемого сигнала от проникновения в него высокочастотных колебаний генератора Г; Е0 - источник постоянного напряжения для установления рабочего режима на конденсаторе С; С - конденсатор с сегнетоэлектриком; Г-генератор высокочастотных колебаний; ZH - сопротивление нагрузки; - D - диод; Uвых - усиленное выходное напряжение сигнала.

Часто в каскаде усиления Д. у. конденсаторы с сегнетоэлектриком включаются по схеме электрич. моста. Усиление по мощности низкочастотных (сотни гц - десятки кгц) электрич. колебаний, даваемое одним каскадом Д. у., достигает 100. U повышением частоты (до неск. Мгц) усиление существенно уменьшается (до 10 и менее). Для получения большего усиления в Д. у., как в ламповых и транзисторных усилителях, отд. каскады усиления могут быть включены один за другим. Д.