загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

м минералов, напр, к образованию сти-шовита, т. е. кварца с плотностью 4350 кг/м3 (при норм, давлении и темп-ре), и т. п. Благодаря этому вещество мантии разделяется на зоны с разной плотностью. Вещество верх, мантии проникает к поверхности на материках в дунитовых поясах, богатых хромитами, платиноидами, высокотемпературными сульфидами, в океанах - в рифтовых долинах средин-ноокеанич. хребтов.

Ранее, ссылаясь на наличие сульфидных руд в земной коре, геологи допускали существование в мантии сульфидной оболочки. Однако определение изотопного состава свинца из разных сульфидных руд показало их различный абсолютный возраст; следовательно, отторжение сульфидов из горных пород происходило в разное время, так что гипотеза сульфидной оболочки лишена достаточного основания. Процесс образования металлич. сплава Fe-Ni, из к-рого состоит ядро Земли, наименее изучен. Вероятно, ядро формировалось в процессах агломерации в протопланетном облаке и далее при адиабатич. сжатии Земли, что продолжалось длительное время.

Над мантией располагается земная кора, к-рая отделяется от вещества мантии границей Мохоровичича (см.Мохоро-вичича поверхность). Выделяют два типа земной коры: материковую (континентальную) и океаническую. Мощность континентальной коры достигает в среднем 35-40 км, а океанической - 6-8 км. Примитивные (толеитовые) базальты океанич. коры - более сложная система, чем вещество кам. метеоритов; они состоят по крайней мере из 4 гл. компонентов: MgO, SiO2, FeO, Al2O3. В них отношение Si/Mg = 6,5, т. е. они не солнечного состава. Базальты земной коры, лунные породы (с поверхности лунных "морей") и эвкриты (базальтические каменные метеориты) имеют идентичный состав и одинаковую офитовую структуру. Исключит, роль в силикатных и др. системах играют вода и др. летучие, понижающие точку плавления системы. Наиболее существенное влияние на маг-матич. процессы оказывает вода в состоянии, близком к надкритическому.

В мантии под вулканами методами сейсмологии обнаружены камеры, заполненные жидкой магмой. Излияние базальтов сопровождается выделением водяного пара - ок. 7% по массе (20% по объёму) от излившегося базальта - и кислых дымов и газов (СО2, HF, HCl, S, SO2). В высокотемпературной стадии остывания базальта (600-800 °С) выделяются гл. обр. СО2, HF, HC1. При средних темп-pax (ок. 200° С) также и соединения серы. При низких темп-рах и в поствулканич. (фумарольной) стадии выделяются СН4, NH4C1, H3BO3, СО2 и др. газы, а также минерализов. растворы. Образование СО2, СО, СН4 - результат реакции в магме углерода с Н2О при разных темп-pax и давлениях. Этот процесс сопровождается частичным разделением изотопов углерода - утяжелением углерода (повышением содержания С13) в СО2, алмазах и карбонатитах (СаСО3 кимберлитовых трубок) по сравнению с углеродом др. горных пород. Базальтовая лава при охлаждении подвергается фракционной кристаллизации с образованием различных магматич. пород, имеющих общие признаки. В магматич. стадии дифференциации возможны ликвация (напр., отделение от силикатов высокотемпературных Cu - Ni -Fe сульфидов) и газовый перенос. В ранней стадии фракционной кристаллизации магмы могут образоваться магнетит и ти-таномагнетит, как следствие окисления в магме Fe2+-> Fe3+; магнетит не растворяется в силикатном расплаве и увлекает с собой Ti в силу близости Ri Fe3+ (0,65) и Ti4+ (0,60). В стадии гл. кристаллизации образуются плагиоклазы от Лабрадора до олигоклаза и мн. др. алюмосиликаты. По мере остывания происходит накопление в расплаве более легкоплавких и летучих соединений, на известной стадии вступающих в реакцию с ранее выделившимися более высокотемпературными соединениями (реакционный принцип Боуэна). В этом отборочном механизме в остаточном расплаве концентрируются ионы, к-рые не вошли в породообразующие минералы из-за своих больших или очень малых Ri. С этими остаточными расплавами связывают происхождение богатых редкими элементами пегматитов и др. горных пород.

Кислые горные породы - граниты, гранодиориты и другие - имеют большое распространение в земной коре.

Одни из них содержат много Са (ок. 2,5% ) и тяжёлых металлов, мало щелочей и летучих, другие бедны Са (ок. 0,5% ) и тяжёлыми металлами, но богаты щелочами и летучими. Происхождение гранитов большинство учёных связывает с эвтектическим плавлением, с процессом гра-нитизации (метаморфизм и метасоматизм) осадочных горных пород на различных уровнях земной коры. Повышенное содержание 18О в кварце гранитов отвечает относительно низким темп-рам образования минерала.

В земной коре материков образуются рудные залежи - месторождения многих хим. элементов, прежде всего Fe, Cu, Ni, Co, Pb, Zn, Mo, Ag, Hg, в виде окислов, сульфидов и др. Их происхождение связано с гидротермальными растворами (см. Гидротермальные месторождения), несущими также и газы. Несмотря на известное разнообразие их состава в связи с глубиной, темп-рой и др. условиями образования, они имеют общие черты, напр, обычны ассоциации SiO2-Au или Pb-Zn-Cu и др. в виде сульфидов или ассоциации SnO2-WO3-Н3ВО3- F в гидротермальных и грейзеновых месторождениях. Гидротермальные образования и грейзены рассматриваются как конечные продукты тектоно-магматич. процесса или гранитизации. Источниками рудного вещества гидротерм могут быть как подкоровые процессы, так и процессы в земной коре. Вопрос о способе переноса тяжёлых металлов вызывает споры. Не исключается газовый перенос металлов, напр, в виде фторидов, причём фтор часто даёт во вмещающих породах большие ореолы рассеяния. Неясны равновесия фторидов, хлоридов, металлов с Н2О при разных темп-pax и давлениях. О хим. и физ. условиях рудообразова-ния даёт представление состав газово-жидких включений в рудных минералах, которые содержат растворы NaCl, MgCh, MgSO4, KCl, H2S, SiO2, карбонатов и следы металлов; нередко высокое давление СО2-до 2000 атм. Эти растворы близки к нейтральным; температура их образования лежит в пределах 50-550 °С. Обыкновенные сульфиды тяжёлых металлов Pb, Zn, Cu, Fe и мн. др. мало растворимы в воде, и изменение давления и темп-ры почти не меняет их растворимости. Напр., чтобы осадить 1 т цинка из раствора ZnS, нужно было бы испарить ок. 10 км3 воды. Маловероятен перенос сульфидов и в виде коллоидных растворов - золей. Существуют, однако, комплексные соединения сульфидов тяжёлых металлов, более растворимые, чем простые сульфиды, напр, дающие ионы HZnS22- или HgS2-. Большую роль в процессе переноса тяжёлых металлов горячими растворами играет концентрация в них СО2 и, вероятно, др. газов: О2, H2S, PH3. Напр., U образует комплексы [UО2(СО3)3]4~, легко растворимые в Н2О при определённой концентрации СО2. Уменьшение СО2 в растворе разрушает этот комплекс и вызывает отложение соединений U. Отложение тяжёлых металлов регулируется также парциальным давлением H2S, к-рое определяет последовательность отложения металлов в сульфидном теле, парциальным давлением СО2, окислительным потенциалом и т. д. Кристаллизация сульфидов, напр. Pb, Zn и мн. др., распределение в них редких элементов In, Ga, Ge, Tl и т. д. происходит по законам изоморфизма. Процесс отложения сульфидов отражается на изотопном отношении S32/S34 в минералах, что имеет диагностич. значение.

Магматические породы на поверхности Земли разрушаются под влиянием климатических факторов и ряда других агентов: организмов, воды, углекислоты, органич. веществ; этот процесс зависит от концентрации ионов водорода и кислорода, ионного потенциала и др. условий. Вещество горных пород при выветривании испытывает сложные превращения. Напр., полевые шпаты превращаются в каолинит, карбонаты и кварц; Na, Mg, К в виде хлоридов, сульфатов, карбонатов переходят в раствор и уносятся потоками в океан и т. д. Вследствие гидратации и карбонатизации общий объём пород увеличивается (рис. 2).
Рис. 2. Увеличение объёма породы в зоне выветривания.

В разрушении горных пород участвуют многие хим. процессы, как, напр., гидролиз алюмосиликатов, к-рый приводит к образованию латерита, свободных водных окисей А12О3 и бокситов, к-рые обогащены Ti,Nb, Sn, Be и др. Окисление до более высоких валентностей часто выполняется микроорганизмами, например Fe2+ -> Fe3+, Mn2+ -> Мn4+ и т. д. Железные осадочные руды обогащаются фосфатами, арсенатами, ванадатами, а марганцевые - Ва, Ra, Co и др. Известняки, а также доломиты, фосфаты и нек-рые др. соли образуются при участии организмов и накапливают Sr, Mn, Pb, F, редкоземельные элементы и т. д.

Соленосные отложения возникают в результате испарения воды в изолиров. бассейнах. Последовательность отложения солей NaCl, MgSO4 и др. идёт по законам галогенеза. В этом процессе происходит отделение твёрдых солей от насыщенного раствора - рапы, к-рая содержит наиболее растворимые соли Na, К, Sr, Li, В, Вг. Подобные растворы встречаются и в подземных высокоминерализованных водах.

Органич. вещество суши при захоронении приводит к образованию углей, а органич. вещество донных отложений совр. и древних морей (гл. обр. планктона) - к образованию нефтей и горючих газов. Изотопный анализ отдельных фракций нефтей на 12С/13С указывает темп-ру их образования - не св. 200-250 °С. Появление углей и нефтей в земной коре изменило миграцию и распределение ряда элементов. Так, напр., U, Y, Ge обычно концентрируются в осадочных железных рудах. С появлением углей их соединения стали накапливаться и в углях и в битумах, образуя нередко месторождения этих элементов. Наиболее стойкие минералы - монацит, торит, золото, магнетит, кварц, циркон, рутил, касситерит и др., при разрушении горных пород накапливаются в прибрежной части морей и океанов и образуют в зонах мор. шельфа россыпные месторождения.

Мощность осадочных пород на материках в нек-рых местах достигает 20 км, а в среднем превосходит 1 км. Общее кол-во осадочных пород на земном шаре указано в табл. 5. Гл. массу пород составляют глины и сланцы (ок. 55% ), карбонатные породы (ок. 25%), пески и песчаники (ок. 20% ).

Все магматические и осадочные горные породы подвергаются в той или иной степени метаморфизму. Разнообразные процессы в твёрдом веществе горных пород идут либо без выноса и привноса вещества извне (собственно метаморфизм), либо с выносом и привнесем вещества (метасоматизм). Различают щелочной метасоматизм (натриевый или калиевый), магнезиальный, кальциевый, железистый, а также серный (березитизацця гранитов), фосфатный, боратный и др. Глины превращаются в сланцы, известняки в мраморы и т. п. На глубине под действием высокой температуры породы могут испытать переплавление (палингенезис, гранитизацию). Все превращения, связанные с метаморфизмом, направлены к хим. равновесию, перекристаллизации с уменьшением объёма. Образуются минералы с большей плотностью и породы б. или м. однообразного минерального состава, содержащие кварц, полевой шпат, слюды (системы с минимумом свободной энергии). В силу сложности и разнообразия процессов метаморфизма за основу классификации метаморфич. пород берутся их минеральные ассоциации (минеральные фации), как показатели условий образования этих пород.

Региональная неравномерность распределения отдельных хим. элементов заставляет выделять на Земле различные геохимические провинции. Изучение терр. распространения хим. элементов в связи с геологией района составляет задачу региональной геохимии, конечной целью к-рой является составление геохимических карт территории на базе общих геол. данных.

Геохимические процессы в гидросфере, атмосфере и биосфере. Водная оболочка Земли - гидросфера - возникла в результате излияния базальтов и выноса в этом процессе воды, СО2 и др. газов. Мировой океан со средиземными и приконтинентальными морями занимает ок. 71% поверхности Земли и имеет общий объём 1,37*1018 м3. Строение дна океанов - результат грандиозных магмато-генных процессов. Донные осадки составляют ок. 1,2*1021 кг. Легкорастворимые вещества обогащают водный раствор, труднорастворимые накапливаются в осадках дна. Соотношения растворённых солей сохраняются постоянными. Гл. ионы океанич. воды указаны в табл. 6.




Табл. 5. - Количество осадочных пород на земном шаре, кг





Глубоководные области

2.17*1020





Батиальные области

1 ,0*1 021





Щиты древних платформ

1.4*1020





Молодые платформы

3,4*1020





всего

1.7*1021








Табл. 6. - Главные ионы океанической воды (на 1 кг океанической воды при солёности S=35, 00%„ и хлорности Сl = 19,375 0/00,)





Компоненты

Концентрация





г/кг

г -же! кг





Катионы





Na+

10,7638

0,46806





Ms2+

1,2970

0,10666





Са2+

0,4080

0,02035





К+

0,3875

0,00991





Sr2+

0,0136*

0,00031





Сумма



0,60529





Анионы





Сl-

19,3534

0,54582





so42

2,7007

0,05623





НСО-3

0,1427

0,00234





СО2-3

(0,0702)

(0,00234)





Вr-

0,0659

0,00083





F-

0,0013

0,00007





Н3ВО3

0,0265







Сумма



0,60529





* В наст, время содержание Sr в океанич. воде принимается равным 8-10-4%.




В толще воды устанавливаются сложные равновесия между органич. веществом, солями, газами и др. веществами океанич. раствора и хим. составом донных отложений. Все воды материков (представляющие собой производные океанич. воды) составляют 3% массы воды океана. В воде рек и пресных озёр гл. ионами являются (в порядке убывания содержания) Са2+, Na+, Mg2+; CO32-, SO.,2-, Cl -.

С поверхности океанов ежегодно испаряется ок. 500 тыс. км3 воды, к-рая частично сбрасывается на материки, просачивается через слои осадочных пород и образует подземные воды. Захороненные воды бывших мор. илов образуют межпластовые воды. Под влиянием обмена между межпластовыми водами и породами и в зависимости от темп-ры пластов формируется состав подземных вод. Известны подземные воды нефтеносных областей, богатые I и Вг, иногда В; хлоркальциевые воды (напр., в девонских слоях Вост.-Европ. платформы); бессульфатные, богатые Ra; сероводородные, обычно возникающие в результате восстановления SO42- бактериями; богатые Li (в Иркутском амфитеатре) и др. Разнообразны и воды минеральных источников. В областях древнего вулканизма минеральные источники - холодные, без СО2. В областях недавнего вулканизма появляются горячие источники с разнообразным солевым составом. Разработана их классификация.

Древняя газовая оболочка Земли была маломощной и состояла из СО2, Н2О, возможно СН4 и др. газов. Совр. атмосфера возникла вторично, с появлением на Земле свободного кислорода в результате фотосинтетической деятельности растений. После этого продукты вулка-нич. эксгаляций S, H2S, NH3, H2, CH4 и др. были окислены, выбыли из атмосферы и осталась совр. азотно-кислородная оболочка Земли (см. Атмосфера).

Из пород Земли в атмосферу при действии вулканов выделяются лёгкие газы Не4,Не3,Н, D ("гелиевое дыхание"), к-рые не удерживаются гравитационным полем Земли и диссипируют (рассеиваются) в космич. пространство. Источником СО2 (а также следов HF, HC1 и др.) являются тоже вулканы. На содержание в атмосфере СО2 оказывает влияние океан, поглощающий СО2 в холодных широтах и освобождающий СО2 на экваторе. Поэтому на экваторе парциальное давление СО2 в атмосфере несколько выше. Изотоп аргона 40Аr накапливается в атмосфере в результате ядерного превращения 40К -> 40Аr (К-захват). Др. инертные газы - Ne, Кг, Хе - первичного происхождения. Атмосфера играет огромную роль в качестве транспортёра многих легколетучих соединений, галогенидов, органич. веществ и т. п. Газы атмосферы участвуют в геохим. выветривании горных пород, напр. О2, СО2. Азот фиксируется синезелёными водорослями и нек-рыми др. растениями. После их гибели в результате метаморфизма их остатков образуется калийная селитра.

Подземные атмосферы, заполняющие пористые породы, имеют разнообразный состав и образуются различными путями. Атмосферные газы могут быть захвачены осадочными породами. В этом случае для них характерно содержание 40Аr по отношению к N2 ок. 1%. Азотные струи без 40Аr - результат метаморфизма органич. вещества (биогенные газы). Известны подземные атмосферы из СО2, а также струи СО2 в районах вулканич. деятельности, нефтяные газы СН4, С2Н6, С3Н8 и др. углеводороды в нефтеносных областях, сероводород, радиогенные газы - Не, Rh и др.

Биосфер а-область на границе твёрдой, жидкой и газовой оболочек Земли, занятая живым, веществом - совокупностью организмов. Биосфера возникла ок. 3,5*109 лет тому назад. Благодаря маломощной первичной атмосфере космич. излучение проникало на Землю. Под влиянием этого облучения из вулканич. дымов и газов Н2О, СО, СО2, HF, HCl, СН4, S, H2S, S2, NH3, Н3ВО3 и др. происходил абиогенный синтез мн.сложных соединений углерода с симметричными молекулами, оптически неактивными. На этом фоне возник биогенный синтез асимметричных оптически активных молекул живого вещества. После возникновения в результате фотосинтеза азотно-кисло-родной атмосферы над ней образовался озоновый экран. Вследствие этого космич. лучи практически перестали проникать к поверхности Земли и абиогенный синтез органич. соединений прекратился. Организмы не только изменили состав атмосферы, но прямо или косвенно участвуют в многочисл. геохим. процессах (см. Биогеохимия).

История отдельных элементов в земной коре. Г. отдельных элементов, поведение их в разных природных процессах составляют специальную часть общей Г. и часто представляют значит, экономич. интерес. Закономерные парагенезисы (ассоциации элементов) встречаются в разных природных процессах, но затем может происходить и разделение элементов. Напр., все галогениды в виде HF, HC1, HBr, HI поступают на поверхность Земли с вулканич. эманациями. В дальнейшем соединения I- под влиянием окислительно-восстановит. реакций (и солнечной радиации) легче других галогенидов окисляются, т. е. переходят в I2, к-рый транспортируется через атмосферу и на поверхности Земли совершает свой круговорот (рис. 3). HF вулканич. газов немедленно фиксируется материковыми породами, особенно молекулой P2Os, образуя прочную молекулу, лежащую в основе фтор-апатита. Соли НС1 и НВr переходят в водные-растворы и мигрируют вместе. Разделит, процессом для них является гл. обр. процесс садки солей при испарении растворов в изолир. бассейнах. NaCl поступает в осадок, а соли Вг остаются в рапе озёр. Отношение С1/Вr в океане близко к 300, то же примерно в озёрах, реках и т. д. Но в отложениях галита отношение Сl/Вr ок. 10 000 и больше, а в рапе (или в Мёртвом море) ок. 50. Т. о., по этому отношению Сl/Вr можно устанавливать происхождение минеральных растворов.
Рис. 3. Круговорот иода.

Другой пример: S, Se, Те выбрасываются вулканами. В гидротермальных рудных отложениях и сульфидах тяжёлых металлов они находятся вместе, но на поверхности Земли разделяются: S легко окисляется в SO42- и сбрасывается в море; при испарении мор. воды образуются осадки сернокислого кальция - гипсы, ангидриты. Se трудно окисляется и в виде нерастворимых водных солей (Fe и др.) селенистой кислоты образует скопления. Те рассеивается при окислении. Миграция Са, Sr, Ba, Ra имеет много общих этапов. Однако Ва, встречаясь с SO42-, даёт нерастворимые соединения BaSO4. Одновременно тут же накапливается и RaSO4. Бикарбонаты Са и Sr сбрасываются в виде водных растворов в океаны. При этом, в силу большой растворимости солей Sr2+, он не уходит в карбонатные осадки, а накапливается в растворах. Ещё более-сложные разделительные процессы идут-при образовании сульфидных гидротермальных отложений и во мн. др. случаях. Миграция отдельных элементов из одной термодинамич. системы в другую является частью общего круговорота или цикла миграции вещества на Земле.

Связь геохимии с другими науками.. Исторический очерк. Г. стоит на стыке геол., физ. и хим. наук и через биогеохимию связывается с биол. науками. Наиболее тесно Г. связана с геол. науками - минералогией и петрографией, особенно в вопросах генезиса минералов, горных пород и геол. процессов. Регионально-геохим. исследования проводятся в тесном сочетании с геотектонич. построениями. В Г. применяются совр. физ. и хим. методы исследования вещества и. процессов в широком диапазоне темп-р и давлений - спектральные, масс-спект-

ральные, резонансные, ядерные и др.; используются математич. методы. Изучение поведения вещества при высоких темп-pax и давлениях связывает Г. с геофизикой. Оценка абсолютного времени, к-рая лежит в основе историч. геологии, и ряд др. проблем истории Земли решаются только точными методами геохим. и ра-диохим. исследований (см. Геохронология). В палеонтологии при решении вопросов образования твёрдых скелетных частей организмов и их эволюции важно знать геохим. условия, в к-рых жили организмы. Изучение ископаемого ор-ганич. вещества раскрывает процессы образования каустобиолитов. Геохим. идеи играют очень большую роль в развитии почвоведения; они направлены на решение ряда важных вопросов агрохимии и агрономии. Геохим. изучение почвенного покрова очень важно для геохим. поисков полезных ископаемых.

В географии также развивается геохим. направление - геохимия ландшафта.

Изучение геохим. процессов, связанных с флорой и фауной, имеет большое значение для с. х-ва и медицины (см. био-геохимия).

Идеи Г. проникают в астрофизику, атомную физику, химию и физ. химию, хим. технологию и металлургию (особенно редких металлов). Г. успешно разрабатывает и внедряет в практику геохимические поиски месторождений полезных ископаемых и содействует решению проблемы комплексного использования минерального сырья. Она активно участвует в той огромной работе, к-рая проводится в Сов. Союзе в области химизации народного х-ва и особенно химизации с. х-ва.

Г. возникла на основе учения об атомах. Корни её уходят в прошлое геологомине-ралогич. знания. Геохим. идеи появились уже в конце 18 в. Нем. геолог К. Г. Би-шоф, франц. геолог Л. Эли де Бомон и др. накапливали геохим. факты, касавшиеся состава, миграции вещества в водных растворах, а также в магматич. и вулканич. процессах. Шведский химик и минералог И. Я. Берцелиус в 1-й пол. 19 в. изучал хим. состав большого числа минералов и первым предложил хим. классификацию минералов. Хим. анализ минералов и горных пород, исследования хим. состава природных газов и вод, хим. изучение полезных ископаемых привели в сер. 19 в. к возможности заложить основы Г. В 1838 швейц. химик К. Ф. Шёнбейн впервые ввёл термин "Г.". Многочисл. сведения по Г. были получены к кон. 19 и нач. 20 вв. Первую обширную сводку данных по Г. дал (1882) амер. геохимик Ф. У. Кларк. Формулирование основных задач в Г. принадлежит сов. академикам В. И. Вернадскому, А. Е. Ферсману и норв. геохимику В. М. Гольдшмидту. Значит, вклад в Г. был сделан работами Н. С. Курнакова и его школы, заложившими основы Г. галогенеза, а также физико-хим. анализа природных солевых систем. Идеи Вернадского и Ферсмана нашли особенно благоприятную почву для развития после Великой Октябрьской социалистич. революции. В СССР ученики В. И. Вернадского и А. Е. Ферсмана - А. П. Виноградов, Д. И. Щербаков, П. Н. Чирвинский, Н. В. Белов, А. Г. Бетехтин, Н. М. Страхов, В. С. Соболев, К. А. Ненадкевич, В. Г. Хлопин, А. А. Сауков, К. А. Власов, В. В. Щербина, В. И. Герасимовский, Н. И. Хитаров и мн. др. разрабатывали и разрабатывают как общие, так и отдельные вопросы Г. Во 2-й пол. 20 в. усилились исследования по радиоактивности горных пород и минералов, развивалась изотопная Г., широко развернулись работы по определению абс. возраста пород. Геохим. исследования в СССР ведутся не только в н.-и. ин-тах, но и в очень многих производств, организациях. Г. преподаётся в ун-тах и др. уч. заведениях. Был создан ряд геохим. ин-тов и отделов, в т. ч. биогеохим. лаборатория, реорганизованная позже в Ин-т геохимии и аналитич. химии им. В. И. Вернадского (см. Геохимии и аналитической химии институт). В 1956 начал издаваться журнал "Геохимия".

Лит.: Вернадский В. И., Очерки геохимии, 4 изд., М.- Л., 1934; Ферсман А. Е., Геохимия, т. 1 - 4, Л., 1933- 1939; его же, Пегматиты, 3 изд., т. 1, М.- Л.,1940; Виноградов А. П., Геохимия редких и рассеянных химических элементов в почвах, 2 изд., М., 1957; его ж е, Введение в геохимию океана, М., 1967; его же, Предварительные данные о лунном грунте, доставленном автоматической станцией " Луна-16", "Геохимия", 1971, N° 3; Vinоgrаdоv A. P., The elementary chemical composition of marine organisms, New Haven, 1953; Сауков А. А., Геохимия, [3 изд.], М., 1966; Clarke F. W., The data of geochemistry, 5 ed., Wash., 1924; Gоlrisehmidt V. M., Geochemistry, Oxf., 1954; Rankama K., .Progress in isotope geology, N. Y.-.L., 1963; Krauskopf К. В., Introduction to geochemistry, N. V.- L., 1967; Handbook of geochemistry, ed. K. H. Wede-pohl, v. 1 - 2, В.- [а. о.], 1969; Mason Br., Principles of geochemistry, 3 ed., N. Y.- L.- Sydney, 1970; Slater J C., Atomic radii in cryetals, "Journal of chemical Physics", 1964, v. 41, № 10, p. 3199-3204; Ahrens L. H., The use of ionization potentials, pt. 1 -Ionic radii of the elements, "Geochimica et cosmochimica Acta", 1952, v. 2, № 3. А. П. Виноградов.

"ГЕОХИМИЯ", ежемесячный науч. журнал АН СССР. Издаётся с 1956 в Москве. Публикует результаты экспериментальных и теоретич. исследований по вопросам геохимии (минералогии, кристаллохимии, кристаллографии, космохимии и др.), а также статьи о геохим. методах исследования и о геохим. методах поисков и разведки месторождений полезных ископаемых. В 1956-60 выходил 8 раз в год, с 1961 - ежемесячно. Тираж (1970) 1750 экз. Л. В. Семёнов.

ГЕОХИМИЯ ЛАНДШАФТА, научное направление, возникшее на границе географии и геохимии в 40-х годах 20 в. Изучает миграцию хим. элементов в ландшафте, используя с этой целью идеи и методы геохимии, особенно биогеохимии. Первые подходы к изучению Г. л. были сделаны в трудах сов. учёных В. И. Вернадского о биосфере (в 1926) и А. Е. Ферсмана по геохимии пустынь и полярных областей (в 1931). Основателем Г. л. как самостоятельного научного направления был сов. учёный Б. Б. Полынов, к-рый в 1946 сформулировал задачи, основные понятия и разработал методику исследований Г. л.

Г. л. классифицирует миграцию элементов по формам движения материи. Ведущее значение в большинстве ландшафтов имеет биогенная миграция, выражающаяся в биол. круговороте атомов, образовании и разложении орсанич. веществ. В результате круговорота солнечная энергия превращается в действенную химическую энергию. Физико-химическая миграция в основном развивается в водах ландшафта. Она определяет многие его геохимические особенности. По характерным ионам природных вод различают кислые (Н+), кальциевые (Са2+) и прочие ландшафты. Участки земной поверхности, отмеченные определёнными особенностями миграции, именуются геохимическими ландшафтами, все их части - водоразделы, склоны, долины и т. д. - связаны между собой миграцией атомов. Особенности миграции положены в основу геохим. классификации ландшафтов СССР и составления ландшафтно-геохим. карт для территории СССР и отдельных регионов.

Важным принципом Г. л. является историзм. Изучение геохим. особенностей ландшафтов прошлых геол. эпох составляет содержание исторической Г. л. Она применяется при поисках полезных ископаемых, в здравоохранении. Научные и прикладные исследования по Г. л. развиваются в АН СССР, академиях наук союзных республик, университетах, отраслевых исследовательских ин-тах, геол. управлениях.

Лит.: Полынов Б. Б., Геохимические ландшафты, в кн.: Избр. труды, М., 1956; его же. Учение о ландшафтах, там же; Г л азовская М. А., Геохимические основы типологии и методики исследования природных ландшафтов, М., 1964; Добровольский В. В., Атомы в ландшафте, М., 1964; Перельман А. И., Геохимия ландшафта, [2 изд.], М., 1966; его же. Современное состояние геохимии ландшафта и задачи дальнейших исследований, в сб.: Геохимия ландшафта, М., 1967.

А. И. Перельман.

ГЕОХИМИЯ ЛИТОГЕНЕЗА, геохимия осадков, геохимия осадочных пород, раздел геохимии, изучающий хим. состав и физико-хим. процессы образования осадочных пород и руд, их эволюцию в истории Земли, закономерности распространённости, распределения и миграции элементов в осадочной оболочке и гидросфере. Г. л. тесно связана общим объектом исследования с литологией. При реконструкции геохимических процессов используются данные стратиграфии, геотектоники, палеогео-графии и океанологии, а также и наблюдения над современными процессами выветривания, осадконакопления и данные экспериментального воспроизведения равновесных систем (карбонатных, фосфатных, солевых и др.) в качестве моделей процессов и реакций геологич. прошлого, с внесением в них необходимых поправок на эволюционные изменения физико-химич. условий осадочного породообразования. Г. л. изучает процессы, протекающие при относительно низких темп-pax и давлениях, ограниченных интервалом в пределах между значениями, характерными для земной поверхности и верхней границы области регионального метаморфизма.

Г. л. охватывает изучением все стадии осадочного породообразования (см. Литогенез), включая выветривание и мобилизацию исходных веществ в области денудации, их перенос реками в конечные водоёмы стока (внутриматериковые, морские и океанические), накопление в толще формирующихся осадков и последующее перераспределение в процессах диагенеза и эпигенеза. Ставит своей целью установление количественных соотношений различных форм переноса элементов в виде истинных и коллоидных растворов, комплексных соединений, механич. взвесей, сорбции на глинистых и др. минералах, равно как и выявление количественных

закономерностей пространственного распределения элементов в водной среде и в толще осадков. Ведущее значение в Г. л. имеют представления о равновесиях между газами атмосферы, ионным составом вод океана и донными осадками (алюмо-силикатные и карбонат-бикарбонатные равновесия), учение об осадочной дифференциации элементов и о зональном их распределении на площади бассейнов. В этой связи рассматривается проблема соотношения кларкового (рассеяние) и рудного (концентрация) процессов, решение к-рой представляет большой практич. интерес при поисках скрытых рудных залежей.

Значение различных типов хим. реакций в образовании осадочных рудных месторождений не одинаково на разных стадиях литогенеза. При формировании месторождений кор выветривания (бокситы, лселезные и никелевые руды) ведущая роль принадлежит реакциям окисления и гидролиза; в образовании месторождений солей - реакциям осаждения (кристаллизации) из истинных растворов (см. Галогенез)', в образовании месторождений фосфоритов, самородной серы, железных, марганцевых и урановых руд - химико-биол. процессам, сопровождаемым реакциями восстановления и диффузионного перераспределения веществ в поровых растворах.

Осадочное породе- и рудообразование и типы обусловливавших их хим. реакций в значительной степени предопределялись физико-геогр. условиями, существовавшими на земной поверхности в тот или иной период геол. времени, режимом тектонич. движений в пределах данного региона, интенсивностью вулканич. деятельности и многими др. факторами.

Г. л. использует геохим. индикаторы при реконструкции фациальных и кли-матич. условий седиментации, в частности солёности вод древних бассейнов, их газового режима, глубины и темп-ры. Ими являются соотношения химически близких пар элементов и изотопные отношения кислорода, серы, углерода и др. Особое внимание уделяется изучению геохимии органич. вещества, к-рое является не только источником горючих газов и нефтей, но и фактором, определяющим процессы восстановления и миграции поливалентных элементов, образования подвижных элементо-органич. соединений и комплексов.

Г. л. имеет непосредственное отношение к проблеме геохим. баланса хим. элементов во внешних оболочках Земли. Фундаментальной особенностью осадочных пород является отчётливо выраженное различие между их составом и средним составом пород "гранитной" оболочки, представлявшей собой главный источник осадочного материала в течение последних 2-3 млрд. лет земной истории. Различие заключается прежде всего в повышенном против баланса содержании в породах осадочной оболочки воды, углекислоты и органич. углерода, а также S, Cl, F, В и др. "избыточных летучих". Другой важной особенностью осадочных пород является высокое содержание в них кальция, сдвиг отношения K/Na в пользу калия, более высокое отношение окис-ного железа к закисному, повышенное содержание сульфатной серы по сравнению с кристаллич. породами "гранитной" оболочки. Все эти свойства наиболее отчётливо выражены в платформенных осадках, т. к. они представляют собой продукты наиболее глубокого выветривания и резко выраженной поверхностной дифференциации. В отличие от них, геосинклинальные осадки испытывали менее интенсивные изменения (особенно пески) и их состав приближается к составу материнских пород. Малой дифференцированности состава осадков противостоят в геосинклинальных областях глубокие эпигенетические их преобразования, связанные с погружением реак-ционноспособных минералов в области повышенных темп-р и давлений.

Лит.: Страхов Н. М., Типы литогенеза и их эволюция в истории Земли, М., 1963; Геохимия литогенеза. Сб. ст., пер. с англ., М., 1963; Ронов А. Б., Общие тенденции в эволюции состава земной коры, океана и атмосферы, "Геохимия", 1964. №8; Ронов А. Б. и Ярошевский А. А., Химическое строение земной коры, там же, 1967, № 11; Дегенс Э. Т., Геохимия осадочных образований, пер. с англ., М., 1967; Гаррелс Р. М. и Крайст Ч. Л., Растворы, минералы, равновесия пер. с англ., М., 1968; Goldschmidt V. М., Geochemistry, Oxf., 1954.

А. Б. Ронов.

ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА, см. в ст. Геохронология.

ГЕОХРОНОЛОГИЯ (отгео... и хронология ), геологическое летосчисление, учение о хронологич. последовательности формирования и возрасте горных пород, слагающих земную кору. Различают относительную и абсолютную (или ядерную) Г. Относительная Г. заключается в определении относит, возраста горных пород, к-рый даёт представление о том, какие отложения в земной коре являются более молодыми и какие более древними, без оценки длительности времени, протекшего с момента их образования. Абсолютная Г. устанавливает т. н. абсолютный возраст горных пород, т. е. возраст, выраженный в единицах времени, обычно в миллионах лет. (В последнее время термин "абсолютный возраст" часто заменяют названием изотопный, или радиологич., возраст.)

Относительная Г. Для определения относительного возраста слоистых осадочных и пирокластических пород, а также вулканич. пород (лав) широко применяется принцип последовательности напластования [т. н. закон Стенсена (Стено)]. Согласно этому принципу, каждый вышележащий пласт (при ненарушенной последовательности залегания слоистых горных пород) моложе нижележащего. Относит, возраст интрузивных пород и других неслоистых геол. образований определяется по соотношению с толщами слоистых горных пород. Послойное расчленение геологического разреза, т. е. установление последовательности напластования слагающих его пород, составляет стратиграфию данного района. Для сравнения стратиграфии удалённых друг от друга территорий (районов, стран, материков) и установления в них толщ близкого возраста используется палеонтологический метод, основанный на изучении захороненных в пластах горных пород окаменевших остатков вымерших животных и растений (мор. раковин, отпечатков листьев и т. д.). Сопоставление окаме-нелостей различных пластов позволило установить процесс необратимого развития органич. мира и выделить в геол. истории Земли ряд этапов со свойственным каждому из них комплексом животных и растений. Исходя из этого, сходство флоры и фауны в пластах осадочных пород может свидетельствовать об одновременности образования этих пластов, т. е. об их одновозрастности. Впервые этот метод определения относит, возраста горных пород был применён в нач. 19 в. У. Смитом в Великобритании и Ж. Кювье во Франции. Тогда ему не было дано надёжного теоретич. обоснования. Кювье объяснял различия в составе комплексов ископаемых, встречаемых в пластах горных пород, вымиранием организмов в результате внезапных геол. катастроф и появлением затем новых их комплексов. Последователи Кювье, в том числе франц. геолог и палеонтолог А. Д' Орбиньи, предполагали, что смена органич. мира Земли после каждой катастрофы связана с "творческими актами божества". Учение Ч. Лайеля о медленных естеств. преобразованиях лика Земли и классич. труды Ч. Дарвина и В. О. Ковалевского об эволюционном развитии органич. мира дали материа-листич. обоснование палеонтологическому методу.

В результате трудов неск. поколений геологов была установлена общая последовательность накопления слоев земной коры, получившая назв. стратиграфической шкалы. Верхняя часть её (фанерозой) составлена при помощи палеонтологич. метода с большой тщательностью. Для нижележащего отрезка шкалы (докембрий), соответствующего огромной по мощности толще пород, палеонтологич. метод имеет ограниченное применение из-за плохой сохранности или отсутствия окаменелостей. Вследствие этого нижняя - докембрийская - часть стратиграфич. шкалы расчленена менее детально. По степени метаморфизма горных пород и др. признакам докембрий делится на архей (или археозой) и протерозой. Верхняя - фанерозой-ская - часть шкалы делится на три группы (или эратемы): палеозойскую, мезозойскую и кайнозойскую. Каждая группа делится на системы (всего в фанерозое 12 систем, см. табл. 1). Каждая система подразделяется на 2- 3 отдела; последние в свою очередь делятся на ярусы и подчинённые им зоны. Как системы, так и многие ярусы могут быть прослежены на всех континентах, но большая часть зон имеет только местное значение. Нанкрупней-шим подразделением шкалы, объединяющим несколько групп, служит эонотема (напр., палеозойская, мезозойская и кайнозойская группы объединяются в фанерозойскую эонотему, или фанерозой). Стратиграфич. шкала является основой для создания соответствующей ей геохронологической шкалы, к-рая отражает последовательность отрезков времени, в течение к-рых формировались тс или иные толщи пород. Каждому подразделению стратиграфич. шкалы отвечают определённые подразделения геохронологич. шкалы. Так, время, в течение к-рого отложились породы любой из систем, носит назв. периода. Отделам, ярусам и зонам отвечают промежутки времени, к-рые наз. соответственно эпоха, век, время; группам соответствуют эры. Крупнейшему стратиграфич. подразделению-эоно-теме - отвечает хронологич. термин - зон. Существуют два зона - докембрий-ский, или криптозойский, и фанерозой-ский. Продолжительность более древнего - докембрийского зона составляет ок. 5/6 всей геол. истории Земли. Каждый из периодов фанерозойского зона, за исключением последнего - антропогено-вого (четвертичного), охватывает примерно равновеликие интервалы времени. Антропогеновая система, соответствующая времени существования человека, намного короче. Расчленение антропоге-на проводится, в отличие от других периодов, по фауне наземных млекопитающих, к-рая эволюционирует гораздо быстрее, чем морская фауна (в составе последней за время антропогена не произошло принципиальных изменений), а также на основе изучения ледниковых отложений, характеризующих эпохи всеобщего похолодания. Нек-рые исследователи считают выделение антропогеновых отложений [см. Антропогеновая система (период)] в особую систему неправомочным и рассматривают её как завершающий этап предшествующего неогенового периода.

Табл. 1. - Геохронологическая шкала фанерозоя



Группа (эра)

Система (период)

Начало, млн. лет назад

Продолжительность, млн. лет



Кайнозойская (продолжительность 67 млн. лет)

Антропогеновая (четвертичная)

1,5*

1,5*



Неогеновая

25

23,5



Палеогеновая

67

42



Мезозойская (продолжительность 163 млн. лет)

Меловая

137

70



Юрская

195

58



Триасовая

230

35



Палеозойская (продолжительность 340 млн. лег)

Пермская

285

55



Каменноугольная

350

75-65



Девонская

410

60



Силурийская

440

30



Ордовикская

500

60



Кембрийская

570

70



* По разным данным, от 600 тыс. до 3,5 млн. лет.




Подразделения стратиграфич. шкалы, выделенные с помощью палеонтологического метода, и соответствующие им подразделения геол. времени, объединённые в единой геохронологич. шкале, были утверждены в 1881 на 2-м Международном геол. конгрессе в Болонье и с тех пор являются общепринятыми во всём мире. В дальнейшем, благодаря совершенствованию методов палеонтологич. исследования и накоплению новых данных, в первоначальную схему геохронологии Земли вносятся нек-рые изменения и уточнения.

Абсолютная Г. В нач. 20 в. П. Кюри во Франции и Э. Резерфорд в Великобритании предложили использовать радиоактивный распад хим. элементов (см. Радиоактивность) для определения абс. возраста горных пород и минералов. Принцип, положенный этими учёными в основу определений абс. возраста, используется до сих пор. Измерение возраста производится по содержанию продуктов радиоактивного распада в минералах. Процесс распада радиоактивных элементов происходит с постоянной скоростью. В результате радиоактивного распада появляются атомы устойчивых, . уже нераспадающихся элементов, количество к-рых увеличивается пропорционально возрасту минерала. При этом принимается как достаточно обоснованное положение, что скорость радиоактивного распада в истории Земли всё время оставалась постоянной. Разные элементы распадаются с различной скоростью. Распад таких элементов, как уран, торий, калий и нек-рых других, происходит очень медленно, на протяжении нескольких млрд. лет. Напр., любое количество урана (238U) распадается наполовину за время, равное 4,51*109 лет, тория (232Th) за 1,41*1010 лет. Эти долгоживущие элементы обычно и используются для определения абс. возраста горных пород и минералов.

В 1907 по инициативе Э. Резерфорда Б. Болтвуд в Канаде определил возраст ряда радиоактивных минералов по накоплению в них свинца. В СССР инициатором радиологич. исследований был В. И. Вернадский. Его начинания продолжили В. Г. Хлопин, И. Е. Старик, Э. К. Герлинг. В 1937 была создана Комиссия по определению абс. возраста геол. формаций.

Цифры, полученные в результате первых определений абс. возраста пород, позволили англ. геологу А. Холмсу в 1938 предложить первую геохронологич. шкалу фанерозоя. Эта шкала неоднократно уточнялась и перерабатывалась. В табл. 1 она воспроизводится на основании новейших данных (Г. Д. Афанасьев, 1968).

Геохронологич. шкала докембрия (см. табл. 2) из-за отсутствия остатков скелетной фауны построена гл. обр. по данным многократных определений абс. возраста магматич. пород на различных материках, что позволило установить одновременность крупных тектономаг-матич. циклов, лежащих в основе деления докембрия (см. Докембрийские эпохи складчатости).




Табл. 2. - Геохронологическая шкала докембрия





Подразделения докембрия

Начало, млн. лет назад

Продолжительность, млн. лет





Протерозой

верхний (рифей)

1600

1030





средний

1900

300





нижний

2600

700





Архей



>3500

>900




Каждое из принятых в СССР подразделений докембрия - архей и протерозой - по длительности значительно превышает отдельные группы фанерозоя. Протерозой подразделяется на три части - нижний, средний и верхний. Последний вошёл в Г. под назв. рифея, к-рый многие геологи считают подразделением, соответствующим группе.

Наиболее древние породы, найденные на Земле, имеют возраст ок. 3500 млн. лет и знаменуют собой начало архея. Пород, возникших в интервале времени от 3500 до 4500 млн. лет (предполагаемый возраст Земли), с достоверностью не обнаружено.

Методы определения абсолютного возраста. Накопление продуктов радиоактивного распада в течение времени, положенное в основу определений абсолютного возраста, выражается формулой: где D - число атомов нерадиоактивного вещества, возникших за время t; Р - число атомов радиоактивного элемента в настоящий момент; е - основание натуральных логарифмов;

- константа распада, к-рая показывает, какая часть атомов радиоактивного элемента распадается за единицу времени (год, сутки, минуты и т. д.) по отношению к первоначальному количеству. Иногда скорость распада выражают периодом полураспада (Т)-временем, в течение к-poro любое количество вещества распадается наполовину. Отношение DIP является функцией возраста (t) минерала. Так: - 1. Отсюда возраст образца минерала (О может быть вычислен по формуле:

Истинный возраст может быть определён в том случае, если отношение D/P изменяется только от радиоактивного распада, т. е. минерал представляет собой замкнутую систему.

Основные типы радиоактивного распада, используемые для определения возраста, следующие:

В зависимости от конечных продуктов распада выделяют следующие методы ядерной Г: свинцовый (уран-торий-свинцовый), гелиевый, аргоновый (аргон-калиевый), кальциевый, стронциевый (стронциево-рубидиевый) и осмиевый. Наиболее широкое применение из них получили свинцовый, аргоновый и стронциевый.

Свинцовый метод основан на исследованиях радиогенного свинца в минералах (уранините, монаците, цирконе, ортите). Он является наиболее достоверным, поскольку решение задачи о возрасте урано-ториевого минерала достигается по трём независимым уравнениям:

Pb, U и Th обозначают содержание в минералах изотопов свинца, урана и тория; и - константы распада изотопов

Если разделить уравнение (1) на (2), то получится уравнение

Это уравнение даёт наиболее близкие к истинным значения возраста, что связано с малой его зависимостью от возможных потерь урана и свинца минералом на протяжении его геол. жизни. Оно позволяет вычислить возраст только по одному измеренному отношению поскольку в наст, время отношениеравно

137,7 и практически во всех минералах и горных породах одинаково. Совпадение значений возраста, полученных по всем четырём уравнениям, свидетельствует о хорошей сохранности исследованного минерала, правильности проведённых анализов и достоверности вычисленного абс. возраста. Измерение изотопного состава свинца производится на масс-спектрометре (см. Масс-спектроскопия). Однако чаще различные уравнения дают разные значения возраста одного и того же минерала. В этом случае для установления истины прибегают к построению диаграммы в координатах 206Pb/238U:207Pb/U235 ). На неё наносят кривую ОА (конкордия), вычисленную теоретически для разных возрастов, и прямую ОВ (изохрона), на к-рую ложатся результаты измерений для нескольких исследованных одновозраст-ных минералов. Истинным возрастом считается значение на пересечении кривой ОА с прямой ОВ.

Поскольку все радиоактивные минералы содержат наряду с радиогенным свинцом примесь свинца обыкновенного, при вычислении возраста приходится вносить поправку. Для того, чтобы избежать этого, был предложен метод определения возраста, основанный на измерении изотопного состава свинца в нескольких минералах одной и той же породы с целью построения по полученным результатам изохроны. Диаграмма строится в координатах 207Pb/204Pb; 206Pb/204Pb. Данные изотопного состава свинца минералов, если они одновозрастны, ложатся на одну прямую - изохрону. Тангенс угла наклона этой прямой к оси абсцисс является отношением 207Pb/206Pb, по к-рому согласно формуле определяется возраст породы.

Может быть вычислен также возраст обычных свинцовых минералов, если известен изотопный состав Pb. Обычный свинец состоит из смеси четырёх изотопов 204Pb, 206Pb, 207Pb, 208Pb, из которых 204Рb не связан с радиоактивным распадом и его содержание условно принимается за единицу. Остальные изотопы порождаются и постепенно накапливаются в результате радиоактивного распада урана и тория, причём темп прироста того или иного изотопа определяется соответствующей константой распада. Поэтому свинец разных эпох имеет различный изотопный состав: свинец более древних эпох содержит пониженное количество изотопов с массами 206, 207, 208, а в свинце более молодых эпох количество их увеличено относительно 204Рb. Возраст, вычисленный по изотопному составу рудного свинца, принято называть м о-дельным возрастом, поскольку он справедлив лишь для такой модели (системы), в к-рой отношение Pb : : U : Th изменяется во времени только вследствие радиоактивного распада. В действительности имеют место как совпадения модельного возраста с истинным для ряда месторождений, так и существенные расхождения, к-рые становятся более частыми в молодых геол. формациях.

Аргоновый метод. Основан на радиогенном накоплении аргона в калиевых минералах. Будучи более доступным благодаря лёгкости получения необходимого материала (калиевые минералы) и относительно простой его обработке, пользуется большой популярностью. Отрицат. чертой его является отсутствие внутреннего контроля (одно уравнение). Как показали многочисл. эксперимент, исследования, калиевые минералы сравнительно легко теряют радиогенный аргон. В меньшей степени это относится к слюдам и в значительно большей степени к полевым шпатам, что делает их малопригодными для определения возраста. Важной положит, чертой аргон-калиевого метода является возможность применения его для определения возраста осадочных отложений по минералу глаукониту. Опыт определения возраста неизменённых глауконитов как молодого (мезокайнозойского)так и древнего возраста показал, что глауконит хорошо удерживает аргон и калий вне зависимости от времени. Несмотря на свою сравнительно малую устойчивость минерал этот удобен тем, что даже при небольших изменениях, ставящих под сомнение пригодность данного образца, он сразу же обнаруживает изменение окраски и хим. состава.

Стронциевый метод, основанный на радиоактивном распаде 87Rb и превращении его в 87Sr, в СССР не приобрёл пока большого распространения. Причина заключается в том, что в районах с высоким общим содержанием рубидия последний может быть привнесён в минералы значительно позже времени их образования, в результате чего при определении возраста этих минералов возможны сильные искажения в сторону "омоложения"; наоборот, в районах с интенсивным щелочным метасоматозом рубидий легко выносится из минералов и тогда значение возраста по 87Sr/87Rb становится сильно преувеличенным. Обычно при измерении возраста по 87Sr/87Rb из гранита выделяют составляющие его минералы и в каждом из них определяют 87Sr/86Sr и 8?Rb/86Sr. На диаграмме в координатах B7Sr/86Sr : 87Rb/86Sr данные анализов отдельных минералов гранита располагаются на одной прямой - изохроне, вытянутой вправо вверх. Тангенс угла наклона изохроны с осью абсцисс представляет собой величину 87Sr/87Rb, определяющую возраст данной породы.

Для оценки возраста геол. объектов в пределах 60 000 лет огромное значение приобрёл радиоуглеродный метод, основанный на том, что в атмосфере Земли под воздействием космич. лучей за счёт обильного азота идёт ядерная реакция 14N + n = 14С + Р; вместе с тем 14C радиоактивен и имеет период полураспада более 5700 лет. В атмосфере установилось равновесие между синтезом и распадом этого изотопа, вследствие чего содержание 14С в воздухе постоянно. Растения и животные при их жизни всё время обмениваются углеродом с атмосферой, поэтому концентрация в них 14С поддерживается на постоянном уровне; в мёртвых организмах обмен с атмосферой прекращается и концентрация в них 14С начинает падать по закону радиоактивного распада. Измеряя содержание 14С с помощью высокочувствит. радиометрич. аппаратуры, можно установить возраст органич. остатков. Так, напр., по костям и шкуре мамонта на Таймыре был установлен возраст его захоронения (11 000 лет). Тот же метод помог датировать эпохи оледенения в Европе и Сев. Америке, определить возраст следов древних человеческих культур и т. д.

Лит.: Страхов Н. М., Основы исторической геологии, 3 изд.. ч. 1 - 2, М.- Л., 1948; Старик И. Е., Ядерная геохронология, М.- Л., 1961; Герлинг Э. К., Современное состояние аргонового метода определения возраста и его применение в геологии, М.- Л., 1961; Дан бар К., Роджерс Д ж., Основы стратиграфии, пер. с англ., М., 1962: Казаков Г. А., Тугаринов А. И., Методика определения абсолютного возраста горных пород, в кн.: Верхний докембрнй, М., 1963; Вонткевич Г. В., Возраст Земли и геологическое летосчисление, М., 1965; Тугарин о в А. И., Войткевич Г. В., Докем-брийская геохронология материков, М., 1966; Афанасьев Г. Д., Геохронологическая шкала в абсолютном летосчислении, в кн.: Проблемы геохимии и космологии. Международный геологический конгресс, 23 сессия, М., 1968.

Б. М. Келлер, А. И. Тутринов, Г. В. Войпгкевич.




0628.htm
ГЕРОНА ФОРМУЛА, формула, выражающая площадь треугольника через три его стороны. Именно, если а, b, с - длины сторон треугольника, a S - его площадь, то Г. ф. имеет вид:

где через [0628-1.jpg]р обозначен полупериметр треугольника[0628-2.jpg] .Г. ф. названа по имени Герона,

ГЕРОНД, Герод (Herondas, Herbdas) (гг. рожд. и смерти неизв.), древнегреческий писатель 3 в. до н. э. Творчество его стало известно только в 1891. Гл. произв. - "Мимиамбы", небольшие бытовые сценки ("мимы"), написанные особым видом шестистопного ямба (холи-ямб); один из ранних памятников лит-ры эллинизма. Достоинства"Мимиам-бов"- точность и правдивость бытовых зарисовок, живость диалога. Серьёзных обществ, и моральных вопросов Г. не поднимает.

Соч . Herondae Mimiambi, ed. О. Cru-sius, 5 aucta, Lipsiae, 1914; Die Mimiamben des Herondas, hrsg. von R. Herzpg, 2 Aufl., Lpz., 1926; Herondas Mimiambi, a cura di G. Puccioni, Firenze, 1951; в рус. пер.- Мимиамбы, пер., введение и примеч. Г. Ф. Церетели, Тифлис, 1929; Мимиамбы, пер., ред. и предисл. Б. В. Горнунга, М., 1938 (с греч. текстом).

Лит.: Тройский И. М., История античной литературы, 3 изд., Л., 1957.

ГЕРОНТОКРАТИЯ (от греч. geron, род. падеж gerontos - старик и kra-tos - сила, власть), введённое англ. этнографом У. Риверсом в нач. 20 в. обозначение ранней формы общества, при к-рой власть будто бы принадлежала старикам. Риверс считал Г. характерной для австралийцев и нек-рых народов Океании. На самом деле влиятельное положение старших членов общины есть лишь один из элементов верховной власти у нек-рых народов при первобытнообщинном строе,

ГЕРОНТОЛОГИИ ИНСТИТУТ Академии медицинских наук СССР, крупнейший в Европе научно-исследовательский институт, изучающий проблемы долголетия. Организован в 1958 в Киеве. Является центром, координирующим исследования науч. и практич. учреждений, занимающихся в СССР различными проблемами геронтологии и гериатрии. Проводит исследования процессов старения человеческого организма с целью раскрытия их механизмов, разрабатывает вопросы профилактики старения. Ин-т располагает экспериментальными лабораториями, клиниками. Г. и. является базой Всемирной организации здравоохранения для проведения курсов по социальным и мед. вопросам геронтологии. Г. и. издаёт ежегодник "Геронтология и гериатрия" (с 1959).

Д. Ф. Чеботарёв.

ГЕРОНТОЛОГИЯ (от греч. geron, род. падеж gerontos-старик и...логмя), раздел медико-биологич. науки, изучающий явления старения живых организмов, в т. ч. и человека. Составными частями Г. являются гериатрия - учение об особенностях болезней старческого организма, герогигиена - учение о гигиене людей старших возрастных групп, и геронтопсихология. Развитие Г. обусловлено существ, изменениями в продолжительности жизни человека. Так, для населения Европы средняя продолжительность жизни в 1890 составляла 38,7 лет, а в 1970- ок. 70 лет. В СССР за период 1917-70 средняя продолжительность жизни увеличилась с 32 до 71 года. Это увеличение происходит за счёт снижения смертности от инфекц. болезней, уменьшения детской смертности и др. С начала 20 в. было выдвинуто неск. теорий старения. По теории И. И. Мечникова (1908) старение - результат интоксикации организма продуктами обмена бактерий, обитающих в кишечном тракте, и продуктами азотистого обмена веществ самого организма (мочевая кислота). Чеш. биолог В. Ружичка полагал, что в основе старения лежит процесс превращения золей в гели, процесс конденсации протоплазмы. Сов. учёные В. В. Алпатов и О. К. Настюкова считали, что старение организма сводится к снижению активности ферментов. Совр. Г. изучает механизмы и причины старения от молекулярного и клеточноге уровней до целостного организма. Особое внимание уделяется роли процессов нервной регуляции. Эти работы привели к развитию исследований в области гериатрии - изучению особенностей развития, течения, лечения и предупреждения заболеваний у людей старших возрастных групп. Прогрессивно увеличивающееся обращение этих групп населения в леч. учреждения и возникновение в связи с этим новых задач для практич. здравоохранения привело к выделению в ряде клинич. специальностей гериатрич. раздела, что наиболее интенсивно произошло в терапии, психиатрии, хирургии, фтизиатрии и др. Развитие Г. осуществляется в трёх осн. направлениях: экспериментальном, клиническом и социальном. В своих исследованиях Г. использует клинич., биол., биохим., биофиз., физиол. и др. методы. Науч. исследования в области со-циально-гигиенич. аспектов Г. направлены на изучение причин преждевременного старения в зависимости от социальных условий, от образа жизни людей, на изыскание наиболее целесообразной организации труда людей старших возрастных групп, их питания, двигательной активности, на наиболее рациональные формы организации социальной и мед. помощи. Развитие Г. в России началось в кон. 19 в. и связано с именами И. И. Мечникова, С. П. Боткина, И. П. Павлова, М. С. Мильмана, А. В. Нагорного, Н. Д. Стражеско, 3. Г. Френкеля и др. В 1938 по инициативе А. А. Богомольца в Киеве была созвана первая в мире конференция по проблеме старости и профилактике преждевременного старения. В 1958 в СССР создан Геронтологии институт АМН СССР, организующий и координирующий все исследования по Г. За рубежом решением проблем Г. занимаются Ин-т гериатрии в Бухаресте (СРР), мед. университетские клиники в Берлине и Лейпциге (ГДР), Ин-т для биол. исследований (США) и др. В СССР в 1963 организовано Всесоюзное научно-мед. об-во геронтологов и гериатров, вошедшее в 1966 в Международную ассоциацию геронтологов. Проблемы Г. освещаются более чем в 20 журналах, издаваемых в Европе и США, в СССР -в ежегоднике "Геронтология и гериатрия" и различных мед. журналах.

Лит.: Давыдовский И. В., Геронтология, М., 1966; Основы геронтологии, под ред. Д. Ф. Чеботарёва, Н. Б. Маньковского, В. В. Фролькиса, М., 1969. Д. Ф. Чеботарёв.

ГЕРОНТОМОРФОЗ (от греч. geron, род. падеж gerontos - старый и mor-phe - форма, вид), эволюция посредством изменений, возникающих на поздних стадиях развития организма. Г.- понятие, близкое анаболии.

ГЕРОНТОПСИХОЛОГИЯ, отрасль геронтологии и возрастной психологии, Использующая общепсихологич. средства и методики для изучения особенностей психики и поведения лиц пожилого и преклонного возрастов. Хотя интерес к проблемам психич. особенностей и изменений при старении существовал давно, Г. как особая дисциплина начинает складываться только во 2-й пол. 20 в. Её появление обусловлено в первую очередь социальными причинами: увеличением (абсолютным и относительным) числа лиц преклонного возраста, проблемами их работоспособности и жизненного устройства. Г. изучает взаимосвязь при старении общих физиол. и психофизич. характеристик И психологич. особенностей поведения, а также личностные сдвиги, порождаемые изменением характера деятельности и ценностных ориентации. Общей целью Г. является изыскание средств продления активной и полнокровной жизни человека.

Лит. см. при ст. Геронтология,

Н. Г. Алексеев.

ГЕРОСТРАТ (Herostratos) (гг. рожд. и смерти неизв.), грек из г. Эфес (М. Азия), сжёгший в 356 до н. э. храм Артемиды Эфесской (считался одним из 7 чудес света), для того чтобы обессмертить своё имя. По преданию, храм сгорел в ночь рождения Александра Македонского. По решению жителей ионийских городов имя Г. было предано вечному забвению, однако о нём упоминает др.-греч. историк Феопомп (4 в. до н. э.). Имя Г. получило нарицательное значение, им называют честолюбцев, добивающихся славы любой ценой.

ГЕРПЕС (греч. herpes-лишай, от Ьёг-рб - ползу, тянусь), группа вирусных заболеваний, характеризующихся высыпанием сгруппированных пузырьков и проявляющихся в виде герпетической инфекции и опоясывающего лишая.

ГЕРПЕТИЧЕСКАЯ ИНФЕКЦИЯ, герпес простой, пузырьковый лишай, инфекционное заболевание, проявляющееся поражением кожи, слизистых оболочек, глаз, центр, нервной системы и др.; вызывается вирусом. Наиболее часто встречается поражение кожи вблизи соединения