загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

а, исследующая естеств. радиоактивное излучение, чаще всего гамма-излучение, горных пород и руд и их взаимодействие с элементарными частицами (нейтронами, протонами, электронами) и излучениями, источниками к-рых служат радиоактивные изотопы или спец. ускорители (генераторы нейтронов, см. Радиометрическая разведка).

Все вилы Г. м. р. основаны на использовании физико-математических принципов для разработки их теории, высокоточной аппаратуры с элементами электроники, радиотехники, точной механики и оптики для полевых измерений, вычислит, техники, включая новейшие электронные вычислит, машины для обработки результатов.

Исследования в скважинах (см. Каротаж) ведутся всеми геофиз. методами. Геофиз. измерения в скважинах производятся приборами, показания к-рых передаются на земную поверхность по кабелю. Наибольшее значение имеет элект-рич., акустнч. и ядерно-геофиз. каротаж скважин. Бурение глубоких скважин ведётся с обязательным их каротажем, что позволяет резко ограничить отбор пород (керна) и повысить скорость проходки. Геофиз. измерения в скважинах и горных выработках применяются также для поисков в пространствах между ними рудных тел (т. н. скважинная геофизика). Наконец, геофиз. методы используются для изучения технич. состояния скважин (определения каверн и уступов, контроля качества цементировки затрубного пространства и т. п.).

Г. м. р. быстро развиваются, успешно решая задачи поисков и разведки полезных ископаемых, особенно в районах, закрытых толщами рыхлых отложений, на больших глубинах, а также под дном морей и океанов.

Лит.: Соколов К. П., Геофизические методы разведки, М., 1966; Федынский В. В., Разведочная геофизика, М.. 1967; Хмелевский В. К.. Краткий курс разведочной геофизики, М., 1967.

В. В. Фодынский.

ГЕОФИЗИЧЕСКИЙ СПУТНИК, искусственный спутник Земли (ИСЗ), конструкция и научное оборудование к-рого предусматривают проведение исследований геофизич. параметров - плотности атмосферы, геомагнитного поля, радиационного поля Земли и др. На ИСЗ могут выполняться как отдельные измерения, так и комплексные геофизич. исследования, позволяющие изучать коррелирова-ние отдельных параметров между собой. Первым ИСЗ такого типа является 3-й советский искусств, спутник Земли (запущен в 1958). В 1964 и позже в США запущены серии орбитальных геофизич. обсерваторий (ОГО) и полярных орбитальных геофизич. обсерваторий (ПОГО), на к-рых проведены разнообразные гепфизич. измерения, в частности в зоне полярных сияний и в полярной шапке.

В нек-рых случаях измерения на Г. с. осуществляются в комплексе со спец. программой наблюдений на сети наземных станций, что позволяет исследовать взаимосвязь между отдельными геофизич. параметрами, а также изучать солнечно-земные связи (см. Гелиогеофизика). Примером такого спутника является "Космос-261" (запущен в 1968), проводивший измерения одновременно с наблюдениями на сети ионосферных станций социалистических стран. Особый тип составляют Г. с., выполняющие оперативные наблюдения и имеющие прикладное значение, напр, метеорологические спутники.

Развитие геофизич. исследований с помощью ИСЗ, вероятно, приведёт к созданию специализированных геофизич. орбитальных станций. Геофизич. наблюдения могут включаться также в программу работ орбитальных станций более широкого профиля. Напр., такие наблюдения были выполнены в июне 1971 экипажем сов. орбитальной станции "Салют" в составе Г. Т. Добровольского, В. Н. Волкова, В. И. Пацаева. М. Г. Крошкин.

ГЕОФИЗИЧЕСКИХ МЕТОДОВ РАЗВЕДКИ ИНСТИТУТ Всесоюзный (ВНИИ Геофизика), научно-исследовательский институт Министерства геологии СССР, образован в 1944 в Москве. Имеет филиалы в Баку, Краснодаре, Октябрьском и отделение в Ра-менском (Моск. обл.). Постоянно действующая экспедиция осуществляет проверку научных положений теоретич. и методич. характера, а также проводит апробацию нового геофизич. оборудования. Основные отделы: сейсмо-, грави-, магнито- и электроразведочный, промысловой геофизики, вычислит. техники (для обработки материалов геофизич. разведки). Научная проблематика: разработка способов и технич. средств для поисков и разведки нефтяных и газовых месторождений геофизич. методами. Результаты исследований печатаются в сборниках "Прикладная геофизика" (с 1945), "Разведочная и промысловая геофизика" (1950-64) и "Разведочная геофизика" (с 1964). М. П. Полшков.

ГЕОФИТЫ (от гео... и греч. phyton - растение), многолетние растения, у к-рых органы, обеспечивающие перезимовку или перенесение длительной засухи, и почки возобновления (на корневищах, клубнях, в луковицах) скрыты в почве. Г.- одна из жизненных форм растений. Части растений - Г., предназначенные к переживанию неблагоприятных условий, защищены почвой, а в холодное зимнее время ещё спадом из отмерших наземных органов и снегом. К Г. относятся мн. луковичные растения (напр., лилейные), корневищные (среди к-рых много злаков и осок) и клубненосные.

ГЕОФОН (от гео... и ...фон), приёмник звуковых волн, распространяющихся в верхних слоях земной коры. Г. представляет собой коробку, внутри к-рой упруго закреплена тяжёлая масса между двумя тонкими гибкими металлич. пластинками. Звуковые колебания, распространяющиеся в почве, приводят в движение соприкасающийся с почвой корпус коробки, тогда как тяжёлая масса вследствие инерции остаётся неподвижной. В ранних конструкциях Г. инертная масса крепилась на диафрагму, разделявшую внутренность коробки на 2 отсека (рис. 1); перемещения диафрагмы относительно корпуса вызывали по обе стороны диафрагмы чередующиеся сжатия и разрежения, к-рые через трубки передавались к ушам наблюдателя. Совр. Г. (сейсмографы разведочные) снабжены электромеханич. преобразователями, с помощью к-рых колебания почвы преобразуются в колебания электрич. тока (рис. 2), усилителем и регистрирующим шлейфовым осциллографом. Г. пользуются при акустической разведке горных пород, в военном деле для прослушивания сапёрных работ, а также в горноспасательных работах. Часто применяются Г., действующие на принципе вибрографа. Г., в к-ром осн. элементом улавливания звуковых волн определённой длины является кристалл пьезокварца, наз. пъе-эогеофоном.

Рис. 1. Схема геофона: 1 - корпус; 2 - диафрагма; 3 - груз; 4 - рабочие объёмы; 5 - слуховые трубки; 6 - почва.

Рис. 2. Электромагнитный геофон: 1 - корпус; 2 - инертная масса - магнит; 3 - полюсные наконечники; 4 - изменяющиеся зазоры между наконечниками магнита и сердечниками (У) электромагнита; 6 - плоские пружины, поддерживающие магнит.

ГЕОХИМИИ И АНАЛИТИЧЕСКОЙ ХИМИИ ИНСТИТУТ им. В. И. Вернадского (ГЕОХИ), научно-исследовательский институт АН СССР. Организован в 1947 на базе Лаборатории геохи-мич. проблем, основанной по инициативе В. И. Вернадского в 1929 в Москве. Главное направление геохимич. исследований-разработка физико-химич. теории геологич. процессов с целью создания теоретич. основ геохимич.

методов поисков и прогнозирования месторождений полезных ископаемых, а также исследования космич. вещества и ядерных геохимич. процессов. В отделе аналитич. химии развивается теория ана-литич. химии, разрабатываются методы разделения элементов и новейшие инструментальные методы их определения. Результаты исследований публикуются в периодических изданиях ("Геохимия", с 1956, "Журнал аналитической химии", с 1946) и в монографических изданиях. Награждён орденом Ленина (1967).

Н. И. Хитаров.

ГЕОХИМИЧЕСКАЯ ДИАГРАММА, парагенетическая диаграмма, графическое изображение последовательности кристаллизации и последующих преобразований минералов, а также их парагенетических ассоциаций. Г. д. изображают обычно последовательность выделения минералов в какой-либо конкретной породе, месторождении или типе руд.

На ось абсцисс наносятся темп-ры кристаллизации соответствующих минералов, на ось ординат - отдельные минералы, расположенные сверху вниз в последовательности их выделения. Градуировка темп-ры даётся по геол. термометрам (см. Геологическая термометрия) - минералам, обладающим определённой темп-рой плавления (с поправкой на давление) или известной темп-рой полиморфного превращения. Время начала и конца выделения минерала на диаграмме обозначается горизонтально вытянутыми фигурами. Чем обильнее выделение минерала, тем шире фигура по вертикали. Несколько последовательных фигур для одного и того же минерала означает существование нескольких генераций минерала (см. Генерация минералов). Звёздочка в конце фигуры обозначает растворение этого минерала или замещение его другим. В конце пунктирной линии указывается начало выделения замещающего минерала. Каждой фазе (вертикальные графы) отвечает определённая парагенетич. ассоциация минералов. При сопоставлении химич. составов выделившихся минералов на Г. д. можно установить последовательность и масштаб фиксации в них химич. элементов.
Г. д. Составляются при геол. поисках и разведке месторождений, при изучении их генезиса, при классификации типов руд и т. д. Методика составления Г. д. разработана акад. А. Е. Ферсманом.

Лит.: Ферсман А. Е., Пегматиты, 3 изд., М., 1940; его же, Геохимия, т. 2, Л., 1934; Щербина В. В., Геохимия, М.-Л., 1939. В. В. Щербина.

ГЕОХИМИЧЕСКАЯ КЛАССИФИКАЦИЯ ЭЛЕМЕНТОВ, подразделяет хим. элементы по признаку их геохимич. сходства, т. е. по признаку их совместной концентрации в определённых природных системах.

Наиболее известные Г. к. э. были предложены норв. геохимиком В. М. Гольд-шмидтом (1924) и рус. геологами В. И. Вернадским (1927), А. Е. Ферсманом (1932) и А. Н. Заварицким (1950). По предложенной В. М. Гольдшмидтом Г. к. э. (построенной с учётом положения элементов в периодич. системе элементов, типа электронного строения атомов и ионов, специфичности проявления сродства к тем или иным анионам, положения данного элемента на кривой атомных объёмов) все хим. элементы делятся на 4 группы: литофильные, халькофильные, сидерофильные и атмофильные.

Литофильные (от греч. lithos - камень и phileo - люблю, имею склонность) - элементы горных пород. На внешней оболочке их ионов, как в атомах инертных газов, располагаются по 8 электронов (в ряду Li - по два). Они трудно восстанавливаются до элементарного состояния; наиболее характерны для них соединения с кислородом (подавляющая масса этих элементов входит в состав силикатов). В природе встречаются таклсе в виде окислов, галогенидов, фосфатов, сульфатов, карбонатов. Преимущественно парамагнитны; располагаются на нисходящих участках кривой атомных объёмов. К ним относятся 54 элемента: щелочные и щёлочноземельные, В, Al, Sc, лантаноиды и актиноиды (Ac, Th, Pa, U); С, Si, Ti, Zr, Hf, P, V, Nb, Та, О, Cr, W, галогены и Mn (возможно Тс и At).

Халькофильные (от греч. chalkos - медь), по В. М. Гольдшмидту, или тиофильные (от греч. theion - сера), по Дж. Р. Гиллебранду (1954),- элементы сульфидных руд: Сц, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Ge, Sn, Pb, As, Sb, Bi, S, Se, Те. На внешней оболочке их катионов располагаются 18 электронов (S2-, Se2-, Те2- по 8 электронов). В природе встречаются в виде сульфидов, селенидов, теллуридов и сульфосолей (исключением является олово, в виде касситерита SnO2). В элементарном состоянии в природе встречаются Au, Ag, Сu, As, S, Bi и нек-рые др. Преим. диамагнитны, располагаются на восходящих участках кривой атомных объёмов.

Сидерофильные (от греч. sideros - железо) - элементы с достраивающейся электронной оболочкой. Сюда относятся все элементы VIII гр. периодич. системы, а также Мо и Re - всего 11 элементов. Располагаются в минимумах кривой атомных объёмов, ферромагнитны и парамагнитны. Обнаруживают специфическое хим. сродство к мышьяку (спер-рилит PtAs2, леллингит FeAs2, хлоантит NiAs2, кобальтин CoAsS), неск. меньше к сере Гпентландит (Fe, Ni)9 S8, молибденит MoS2 и др.], а также к Р, С, N. Платиноиды в природе находятся преим. в элементарном состоянии, железо как в виде окислов и силикатов, так и в виде сульфидов, реже арсенидов и в самородном состоянии.

Атмофильные (от греч. atmos- пар, испарение) - элементы атмосферы. К этой rpyune относятся все инертные газы (от Не до Rn), N и Н - всего 8 элементов. В природе для них характерно газообразное состояние. Большинство из них имеет атомы с заполненной электронной внешней оболочкой, располагаются в верхних частях кривой атомных объёмов; преим. диамагнитны. Для большинства (кроме водорода, близкого к литофиль-ным элементам) характерно нахождение в природе в элементарном состоянии.

По приведённой классификации все элементы распределяются по главнейшим ге-нетич. и парагенетич. природным ассоциациям. Понятия "биофильные" (элементы живых организмов) и "талассо-фильные" (элементы морской воды) лежат вне этой классификации.

Лит.: Ферсман А. Е., Геохимия, т. 1, Л., 1933; Щербина В. В., Геохимия, М.-Л.,. 1939; GqldschraidtV. M., Geochemische Verteilungsgesetze der Elemente, Bd 1-8, Kristiania, 1923-27; Войткевич Г. В. [и др.], Краткий справочник по геохимии, М., 1970. В. В. Щербина.

ГЕОХИМИЧЕСКАЯ ФАЦИЯ, совокупность физико-химич. условий среды, определяющих характер седиментации и диагенеза осадков. Г. ф. характеризуется ограниченными колебаниями значений концентрации водородных ионов (рН), окислительно-восстановительного потенциала (Eh), температуры, минерализации и солевого состава вод, концентрации органич. вещества в осадках и сопровождается типичными ассоциациями аутигенных минералов. Параметры, свойственные той или иной Г. ф., могут быть непосредственно измерены в современных морских и внутриматериковых водоёмах и лишь с известным приближением реконструированы для древних бассейнов. Обычно основой для этого служат количественные соотношения аутигенных минералов поливалентных элементов (Fe, Mn, U, S и др.), обладающих определёнными полями устойчивости в рамках системы Eh -рН.

Выделяют две основные группы Г. ф.- континентальные и морские. Первые отличаются преимущественным развитием окислит, условий (избыток свободного кислорода), тогда как вторые - широким диапазоном условий, от резко восстановительных, развитых обычно в осадках, обогащённых органич. веществом (сульфидные Г. ф.), через нейтральные (лептохлоритовые Г. ф.) до резко окислительных (Г. ф. окислов и гидроокислов железа).

Г. ф. изменяются во времени в сторону большей их восстановленности в условиях устойчивого накопления осадков на дне прогибающихся бассейнов либо ,в сторону большей их окисленности - при подъёме морского дна. Понятие "Г. ф." впервые введено в науку советским ли-тологом Л. В. Пустоваловым (1933).

Лит.: Пустовалов Л. В., Геохимические фации и их значение в общей и прикладной геологии, "Проблемы советской геологии", 1933, т. 1, № 1; Ферсман А. Е., Геохимия, т. 2, Л., 1934; Теодоро-вич Г. И., Осадочные геохимические фации, "Бюл. Московского общества испытателей природы. Отдел геологический", 1947, т. 22(1); Гуляева Л. А., Геохимические фации, окислительно-восстановительные обстановки и органическое вещество осадочных пород, в кн.: Советская геология, сб. 47, М., 1955. А.Б.Ронов.

ГЕОХИМИЧЕСКИЕ КАРТЫ, карты, отображающие закономерности пространственного распределения хим, элементов в горных породах. Выявляют области рассеяния и зоны концентрации элементов в разных типах пород (изверженных, осадочных, метаморфич.) и в пределах различных структурных зон региона.

Согласно классификации А. Е. Ферсмана, различают общие и частные Г. к. Общие Г. к. составляются на основе использования качественных и полуколичеств, аналитич. данных, к-рые наносятся на генерализованную геологич. или тектонич. основу в виде хим. символов различной величины и формы и показывают участки присутствия или повышенной концентрации отд. элементов и их групп. При составлении частных (поэлементных) Г. к. используются результаты количественных определений, характерных для данного региона элементов. Частные Г. к. обычно составляются для элементов, определяющих металлоге-нич. и пром. специализацию региона (напр., Сu, Pb, Zn, Ni, U и др.), или для сопутствующих элементов-индикаторов, имеющих большое поисковое значение (напр., S, As, Sb, F, C1 и др.). Изменения абсолютных или относительных (по сравнению с кларком) содержаний каждого из элементов в породах на площади региона отображаются сменой цветов раскраски или изолиниями.

При геохимич. картировании территорий, сложенных осадочными или осадоч-но-вулканогенными породами и хорошо обеспеченных буровыми данными, наиболее рационально построение литолого-геохимических карт. На литолого-геохимич. картах (см. карту) изолинии отображают количественное изменение содержания какого-либо одного характерного элемента или величины отношения геохимически близкой пары элементов в стратиграфически одновозраст-ных толщах, отлагавшихся в пределах древнего бассейна седиментации. Литоло-го-палеогеографическая основа такой карты позволяет рассматривать концентрации элемента (напр., Al, Fe, Mn, Р, U и др.) на фоне реконструируемых фациальных и климатич. условий образования осадков данного возраста; при этом учитываются расположение древних береговых линий, областей сноса, их петрографич. состав, а при достаточном количестве исходных данных - и физико-хим. условия, существовавшие в области выветривания и в толще осадков на дне бассейна.

Г. к. вместе с прилагаемыми к ней разрезами, гистограммами, таблицами химич. и минералогич. анализов и др. геохим. материалами помогают истолковывать причины возникновения аномальных (промышленных) концентраций элементов по сравнению с фоновыми их содержаниями во вмещающих породах региона. Г. к. существенно дополняют данные прогнозно-металлогенич. карт, способствуя выявлению перспективных площадей при поисках месторождений эндогенных и экзогенных полезных ископаемых. Отражение на Г. к. областей повышенных и особопониженных концентраций нек-рых элементов (напр., J, В, Sr, Сu и др.) представляет также особый интерес для медицины и с. х-ва, т. к. с ними связаны заболевания человека и животных (см. Биогеохимические провинции, Биогеохимические эндемии). Особенности миграции химич. элементов в условиях современного ландшафта выявляются с помощью составления ланд-шафтно-геохимич. карт (см. Геохимия ландшафта).

Лит.: Гинзбург И. И., Муканов К. М., Основные принципы составления геохимических карт рудных районов при металлогенических исследованиях, в кн.: Металлогенические и прогнозные карты, А. А., 1959; Казмин В. Н., Орлов И. В., К вопросу о принципах составления геохимических карт при геологической съемке, "Советская геология", 1966, М°6;Ронов А. Б., Ермишкина А. И., Методика составления количественной лито-лого-геохимической карты, "Доклады АН СССР", 1953, т. 91, №5; Ферсман А. Е., Геохимические и минералогические методы поисков полезных ископаемых, Избранные труды, т. 2, часть 3, М, 1953, разд. 6 (геохимическое картирование), с. 556 - 559.

А. Б, Роков.

ГЕОХИМИЧЕСКИЕ ПОИСКИ полезных ископаемых, методы, основанные на исследовании закономерностей распределения химических элементов в литосфере, гидросфере, атмосфере и биосфере с целью обнаружения месторождений полезных ископаемых. Соответственно характеру вещества, исследуемому в геологопоисковых целях, различают литохим., гидрохим., атмохим. (газовые) и биогеохим. методы. Местное среднее содержание хим. элементов в горных породах, почвах, природных водах, в приземной атмосфере и растениях в удалении от месторождений характеризует т. н. геохимический фон (Сф), близкий к цифрам кларков элементов. Вблизи залежей полезных ископаемых содержания хим. элементов закономерно изменяются, образуя геохим. аномалии - признаки возможного нахождения пром. месторождений. Эти аномалии представляют собой первичные и вторичные ореолы и потоки рассеяния вещества полезного ископаемого (см. Ореолы рассеяния), возникающие в процессе образования месторождений или в результате последующей миграции хим. элементов. Геохим. ореолы месторождений значительно превышают размеры залежей и нередко приурочены к покрывающим породам, т. е. расположены вблизи поверхности, что облегчает их обнаружение и в благоприятных условиях определяет высокую эффективность Г. п. В отличие от пром. содержания полезных компонентов в залежах, содержание тех же хим. элементов в аномалиях часто лишь ничтожно отличается от местного фона, что требует для их обнаружения высокочувствит. методов. Напр., при Г. п. месторождений ртути анализ горных пород ведётся с чувствительностью 1*10-8 % Hg, золота 1*10-7' % Аи, что соответственно в 10 млн. и в 3 тыс. раз меньше пром. содержания этих металлов. Критерием для выделения аномалий служит содержание хим. элемента, зависящее от нормального или логнормального закона распределения фоновых содержаний.

Г. п. проводятся систематическим определением содержаний хим. элементов в пределах исследуемого района путём отбора проб по определённой поисковой сетке для последующего анализа их состава. В пробах определяют содержание хим. элементов искомого полезного ископаемого - основных ценных компонентов залежи или их спутников. Более прогрессивны Г. п., не требующие отбора проб (воздушные и автомобильные методы) с непрерывной автоматич. записью, или пешеходные с отсчётом показаний приборов в точках наблюдений. Такие приборы пока созданы для определения содержаний ограниченного числа хим. элементов (напр., радиометры, берилломет-ры).

Наиболее широко проводятся Г. п. рудных месторождений, важнейшее значение среди них имеет литохимическая съёмка, к-рая основана на массовом опробовании горных пород и продуктов их выветривания. С помощью этого метода открыты многие месторождения цветных, редких металлов и золота, в т. ч. находящиеся в скрытом залегании и недоступные для выявления обычными геол. методами. Гидрохимический метод основан на исследовании состава природных поверхностных и подземных вод путём получения сухого остатка, соосаждения или экстракции рудных элементов с последующим спектральным или хим. анализом. При поисках сульфидных месторождений индикаторами оруденения могут служить пониженные значения рН и высокие содержания в водах сульфат-иона (SO''). Г. п. месторождений нефти и газа основаны на определении содержаний углеводородных газов в почвенном воздухе или в пробах горных пород (см. Газовая съёмка, Газовый каротаж). Биогеохимический метод основан на исследовании хим. состава растений, обычно путём их предварит, озоления и последующего спектрального анализа. Применение гидро- и биогеохим. методов целесообразно в условиях, неблагоприятных для проведения литохим. поисков.

В результате Г. п. составляются карты и графики содержаний элементов-индикаторов полезных ископаемых, по к-рым с учётом геол. и др. данных проводится интерпретация выявленных геохим. аномалий; среди них, как правило, только немногие отвечают пром. месторождениям. Поэтому оценка геохим. аномалий требует тщательного анализа условий рассеяния и концентрации хим. элементов на основе теоретич. законов геохимии. Возрастающее значение при обработке результатов Г. п. получают матем. методы с использованием ЦВМ. Эффективность Г. п. обеспечивается их совместным проведением с геол. и геофиз. исследованиями, в сочетании с проходкой горных выработок и буровых скважин.

Теоретич. основы Г. п. были заложены в трудах В. И. Вернадского; впервые эти методы получили применение в СССР (Н. И. Сафронов, А. П. Соловов, В. А. Соколов).

Лит.: Вернадский В. И., Избр. соч., т. 1, М., 1954; Инструкция по геохимическим методам поисков рудных месторождений, М., 1965; Сафронов Н. И., Основы геохимических методов поисков рудных месторождений, Л., 1967.

ГЕОХИМИЧЕСКИЕ ПРОВИНЦИИ, отдельные области и районы, характеризующиеся специфич. преобладанием одних хим. элементов (в изверженных горных породах называется "специализацией" по тому или иному хим. элементу) и недостатком других. Проявляется в отклонении от соотношений средних содержаний хим. элементов (см. Кларки) в земной коре: чем больше отклонение, тем контрастнее выражена данная Г. п. и тем сильнее это сказывается на локализации в данной области месторождений определённых типов полезных ископаемых, на особенностях характерных почв, минерализации подземных и поверхностных вод, растительности и животного мира, вызывая иногда специфич. заболевания растений и особенно животных (см. Биогеохимические эндемии).

Изучение Г. п. помогает решению ряда задач региональной геохимии. Зная специфику хим. состава преобладающих элементов в данной Г. п., можно более целеустремлённо проектировать в данном р-не геохимические поиски месторождений полезных ископаемых. Как правило, чем больше отклонений от "кларка" в сторону превышения, тем вероятнее нахождение месторождений данного элемента при условии, что соотношение других элементов не препятствует его концентрации. Рудоносные комплексы изверженных пород в отличие от нерудоносных характеризуются более неравномерным содержанием рудных элементов. В. В. Щербина.

ГЕОХИМИЧЕСКИЕ ПРОЦЕССЫ, процессы изменения хим. состава горных пород и минералов, а также расплавов и растворов, из к-рых они образовались. В результате Г. п. происходит миграция хим. элементов (удаление одних, привнес и концентрация других), изменение их валентных состояний и т. д.

Г. п. могут быть подразделены на след, группы: геологич. предыстории, эндогенные, экзогенные и метаморфогенные. Г. п. геологич. предыстории охватывают процессы, связанные с образованием Земли как небесного тела. Эндогенные Г. п. начинаются с выплавления магмы из верхней мантии, её дегазации и дифференциации. Характер и степень дифференциации магмы обусловлены совокупностью ряда физико-хим. процессов (падение темп-ры, выделение летучих, ассимиляция, кристаллизационная и гравитационная дифференциация и др.), вследствие которых из магмы возникают породы, разные по хим. составу, структуре и с различными количественными соотношениями одних и тех же минералов. При охлаждении основной и ультраосновной магм из расплава в твёрдые фазы в первую очередь переходят преим. соединения железа, магния, кальция, хрома, титана, а также платина и элементы её группы. Продуктами первой стадии кристаллизации являются ультраосновные и основные горные породы (дуниты, перидотиты, габбро, пироксени-ты и др.) и связанные с ними рудные минералы: магнетит, хромит, титано-магнетит и др., образующие иногда промышленные месторождения. В результате выделения из магмы указанных элементов она становится более кислой и по своему составу приближается к диоритовой магме. В ходе дальнейшей кристаллизации магма обогащается кремнием, алюминием, щелочными металлами, летучими элементами и по своему составу приближается к гранитной магме. Кристаллизация последней даёт граниты и остаточный пегматитовый расплав, при застывании к-рого образуются пегматитовые жилы (см. Пегматиты), часто обогащённые минералами редких элементов. Взаимодействие летучих с уже закристаллизовавшейся горной породой приводит к процессам автометаморфизма. Повышенные количества щелочных металлов в остаточном расплаве вызывают явления щелочного метасоматоза, часто с привносом редких элементов, и превращения гранодиоритов и гранитов в щелочные граниты, сиениты и нефелиновые сиениты. При участии паров, газов и горячих растворов, выделившихся из магмы (постмагматических), происходят процессы скарнообразования (см. Скарны), грейзенизации, пропилитизации, березитизации (см. Березит), серпенти-низации, лиственитизации и образования гидротермальных месторождений меди, свинца, серебра, цинка, олова, вольфрама, золота и др. Под воздействием растворов различного состава происходят следующие виды метасоматоза: щелочной, кальциевый, магнезиально-желези-сто-силикатный, хлор-фтор-борный, карбонатный и пр.

Экзогенные Г. п. охватывают все виды выветривания горных пород и слагающих их минералов (разложение, окисление, гидратация, карбонатизация и пр.), протекающие во влажном климате с участием почвенных кислот, а в сухом (аридном) климате в щелочной среде при резком преобладании окислительных реакций. Продукты выветривания переносятся преимущественно водными потоками в океаны, моря и континентальные водоёмы (озёра) в виде механич. взвеси, истинных и коллоидных растворов. Состав растворов претерпевает изменения под влиянием поглотительной способности почв и сорбции элементов глинами; большую роль при этом играют микроорганизмы. В морских водоёмах происходит хим. дифференциация элементов: у берегов отлагаются руды алюминия - бокситы, далее руды железа, марганца, фосфориты и за ними известняки и доломиты. Образовавшиеся осадки в результате воздействия процессов коагуляции, дегидратации и т. д. превращаются на стадии раннего диагенеза в горную породу, а под влиянием перераспределения веществ без при-вноса извне на стадии позднего диагенеза происходит образование конкреций и т. д. (см. Диагенез).

Дальнейшее хим. изменение осадочных пород происходит под влиянием привноса вещества извне, а также роста температур и давлений при погружении пород на значительные глубины (см. Эпигенез).

В результате метаморфизма происходит более глубокий процесс преобразования вещества горных пород с перекристаллизацией. В зависимости от температуры и давления образуются различные мета-морфич. фации пород: зелёных сланцев, эпидот-амфиболитовая, роговообманково-габброидная, пироксен-роговиковая, гра-нулитовая и эклогитовая (см. Метаморфизм горных пород). При достаточно высоких температуре и давлении происходит мигматизация (переход веществ в вязкое состояние, предшествующее расплавлению), замыкающая цикл Г. п.

Лит.: Ферсман А. Е., Геохимия, т. 2-3, Л., 1934-37; Лебедев В. И., Основы энергетического анализа геохимических процессов, Л., 1937; Mason В., Principles of geochemistry, 3 ed., N. Y., 1966; Krauskopf К. В., Introduction to geochemistry, N. Y., 1967. В. В. Щербина.

ГЕОХИМИЧЕСКИЕ УЗЛЫ, области пересечения двух разнородных геохим. систем. Напр., пересечение специфич. фации осадочных пород типа медистых песчаников с наложенными эндогенными процессами вдоль более поздних текто-нич. нарушений. В результате наложения геохим. процессов в Г. у. происходит усиленная миграция хим. элементов с необычными их сочетаниями и аномальными концентрациями, что приводит к образованию комплексных месторождений, заключающих группу полезных ископаемых. Термин "Г. у." предложен А. Е. Ферсманом в 1931.

Лит.: Ферсман А. Е., Геохимические проблемы Союза, в. 2, Л., 1931.

В. В. Щербина.

ГЕОХИМИЧЕСКИЕ ЦИКЛЫ, совокупность последовательно происходящих геохимических процессов, в к-рых элементы после ряда миграций возвращаются в исходное состояние. Для земной коры основной Г. ц. охватывает процессы: магматической дифференциации; кристаллизации с образованием магматич. пород; постмагматического преобразования пород под влиянием эндогенных флюидов (если оно имело место); выветривания; переноса материала водами с хим. дифференциацией и разделением веществ по фациям при осаждении в морских бассейнах; процессы раннего и позднего диагенеза с формированием осадочных пород; эпигенетического изменения и метаморфизма при погружениях под отлагающиеся осадки, а также образование под влиянием гранитизирующих флюидов гранито-гнейсов и гранитов, часто трудно отличимых от гранитов, происшедших из магматич. расплава, особенно если метаморфизованная осадочная порода подвергалась расплавлению.

Г. ц. могут быть прослежены и для отдельных хим. элементов; при этом Г. ц. может быть осложнён биогенным циклом: извлечение элемента из почвы или осадочной породы растениями, поедание растений животными, отмирание животных и растений и возвращение элемента в осадочную породу, продолжающую свой Г. ц. Термин "Г. ц." предложен А. Е. Ферсманом в 1922.

Лит.: Ферсман А. Е., Геохимия, т. 2, Л., 1934. В. В. Щербина.

ГЕОХИМИЧЕСКИЕ ЭПОХИ, промежутки времени, характеризующиеся появлением месторождений определённого состава либо осадков и горных пород, обогащённых определённым элементом или целой ассоциацией элементов. Так, в геол. истории Земли отмечается железорудная эпоха, связанная с началом нижнего протерозоя (ок. 2500 млн. лет назад), эпоха свинцовых месторождений (1700- 1400 млн. лет) и др.

Каждая Г. э. характеризуется совокупностью внешних данных, определявших условия концентрации данного металла. Напр., интенсивное глобальное проявление железорудных месторождений и железистых фаций - итабиритов, железистых кварцитов - было вызвано, вероятно, первыми проявлениями жизни, обогащением атмосферы Земли свободным кислородом и, как следствие этого, существенным изменением характера водной среды Мирового океана. В результате происшедшего окисления двухвалентного железа в трёхвалентное произошла садка железа, до этого накапливавшегося в океане в виде бикарбонатных соединений. Этот процесс продолжался ок. 200-300 млн. лет и создал железорудные формации [Кривой Рог (СССР), озеро Верхнее (США), Минас-Жерайс (Бразилия) и др.] с запасами, превышающими все остальные жел. руды. Накопление свинца связано с карбонатными осадками, характеризующимися высокими средними содер-жаниями свинца. Массовое выпадение первых карбонатов, а вместе с ними рассеянного свинца относится к эпохе свинцовых месторождений, когда в результате метасоматич. процессов свинец карбонатов был мобилизован и переотложен в виде рудных залежей. К этой эпохе относится образование месторождений Салливан (Канада), Брокен-Хилл (Австралия), Завар (Индия) и др.

Существуют также золоторудная эпоха архея; эпоха накопления урана, ванадия и никеля, связанная с массовым осаждением этих металлов в начале палеозоя на территории Евразии; широко известна карбоновая эпоха угленосных формаций, обусловленная расцветом на Земле пышной флоры и последующим её захоронением и превращением в угольные залежи.

Лит.: Страхов Н. М., Основы теории литогенеза, т. 1, М., 1962; Тугаринов А. И., Войткеви ч Г.В., Докемб-рийская геохронология материков, 2 изд., М., 1970: Тугаринов А. И., Шилов Л. И., Изотопы свинца в докембрии, М., 1968. А. И. Тугаринов.

ГЕОХИМИЧЕСКИЙ БАЛАНС, баланс между массой хим. элементов, поступивших в океан при выветривании извержен-ных горных пород (пропорционально их кларкам) за время существования Земли, и массой хим. элементов, слагающих осадочные горные породы (с учётом воды и углекислого газа) в совокупности с массой хим. элементов, сохранившихся в морской воде. Согласно В. М. Гольдшмидту, к-рый ввёл (1933) понятие Г. б., за всё время существования Земли с каждого см2 её поверхности было смыто 160 кг изверженных пород; из них (за счёт гидратации, окисления и карбонатизации) на каждый см2 поверхности получилось 169,6 кг осадочных пород. Зная кларки гидросферы и средний состав осадочных пород, можно для каждого элемента составить его Г. б. Эмпирические данные показывают, что Г. б. не всегда соблюдается и для ряда элементов (в частности, для хлора, серы, бора и кальция) он нарушен.

Лит.: Гольдшмидт В. М., Основы количественной геохимии, пер. с нем., "Успехи химии", 1934, т. 3, в. 3; Ронов А. Б., Ярошевский А. А., Химическое строение земной коры, "Геохимия", 1967, № 11.

В. В. Щербина.

ГЕОХИМИЯ (от гео... и химия), наука о хим. составе Земли, законах распространённости и распределения в ней хим. элементов, способах сочетания и миграции атомов в ходе природных процессов. Г.-часть космохимии. Единицами сравнения в Г. являются атомы и ионы.

Одна из важнейших задач Г.- изучение на основе распространённости хим. элементов хим. эволюции Земли, стремление объяснить на хим. основе происхождение и историю Земли, дифференциацию её на оболочки (геосферы). Наибольшее внимание в Г. уделяется проблемам распространённости и распределения хим. элементов.

Распространённость химических элементов. Распространённость различных хим. элементов определяется синтезом их ядер, происходящим по разным термоядерным реакциям в недрах звёзд. Стадия эволюции звезды (её темп-ра) определяет характер этого синтеза.

Согласно наиболее распространённым космогонич. гипотезам (см. Космогония), при образовании Солнца из сжимающейся и вращающейся туманности на заключит. стадии сжатия от центр, сгущения отделилась значит, масса горячей плазмы которая образовала вокруг него про-топланетное облако в виде диска. Облако быстро охлаждалось, и в нём возникла спонтанная конденсация вещества. В результате многостадийных реакций (конденсационный рост ядер, их коагуляция, процессы аккреции и агломерации) газовое облако превратилось в газопылевое. Одновременно происходила потеря облаком газов в космическое пространство. Холодное газопылевое облако в силу ротационной неустойчивости разбилось на ряд сгущений - протопланет, к-рые адиабатически сжимались. Благодаря этому процессу из холодного вещества протопланетного облака образовались планеты земного типа и астероидный пояс с астероидами и метеоритами. Наконец, на периферии протопланетного облака происходила при очень низких абс. темп-pax конденсация отлетевших газов (Н, Не, NHs, CH4 и др.), образовавших большие планеты - Юпитер, Сатурн, Нептун, Уран.

Непосредственное определение общего состава планеты невозможно. Однако астрономические (спектральные) данные о составе Солнца и данные о хим. составе кам. метеоритов (наиболее распространённых-хондритов) позволяют судить о распространённости хим. элементов на Земле и на др. планетах. Из табл. 1 видно, что распространённость элементов на Солнце и в метеоритах совпадают. Наиболее распространённые элементы (изотопы) имеют чётные по протонам и чётные по нейтронам ядра:

и многие др. Элементы с четно-нечётным числом протонов или нейтронов занимают среднее место. Элементы с нечётным числом протонов и нейтронов имеют очень малую распространённость,

напр. Распространённость элементов с чётным порядковым номером больше соседних с нечётными номерами (рис. 1). Лёгкие элементы Li, Be, В находятся в дефиците, т. к. "сгорают" в реакциях с протонами. Ядра элементов конца Менделеевской системы имеют огромный избыток нейтронов и потому неустойчивы. Эти элементы претерпевают радиоактивный распад (U, Th, Ra и др.) и спонтанное деление (U, Th, нек-рые актиниды).

Из данных о хим. составе оболочек Земли следует, что Земля имеет метеоритный состав. Метеориты разделяются на каменные (хондриты и более редкие ахондриты), железные (из Fe-Ni сплава) и смешанные. Хондриты потеряли все летучие вещества, кроме тех, к-рые прочно вошли в соединение с твёрдым веществом метеоритов - H2О, FeS, С, NH3 и др. Т. о., их твёрдое вещество по распространённости элементов отвечает солнечному составу; Mg, Si, Fe, О занимают первые места (по числу атомов Si/Mg = l), затем S, A1, Са и др. Силикатная фаза хондритов состоит преим. из мета- и ортосиликатов (см. Силикаты)- пироксенов (MgSiO3) и оливинов [(Mg,Fe)2SiO4], т. е. является тройной системой MgO, SiO2, FeO. Каменные метеориты - многофазные системы; помимо главных фаз - силикатной и металлической (сплав Fe - Ni), они имеют ещё сульфидную, хромитную, карбидную, фосфидную фазы.
Табл. 1.- Распространённость химических элементов на Солнце и в каменных метеоритаж (хондритах) ( - число атомов данного элемента на 106 атомов магния)



Элементы

Солнце

Метеориты



lg


lg




1 Н

10,64

4,4.1010







3 Li

<-0,46

<3,4.10-1

1,54

3,5.101



4 Be

0,98

9,55

-0,14

7,19.10-1



5 В

2,24

1.7.102

1,18

1,50.101



6 С

7,15

1,4.107

4,30

2.02.104



7 N

6,70

5,0.106

2,54

3,47.102



8 О

7,47

3,0.107

6,55

3,54.106



9 F





3,01

1,02.102



11 На

4,94

8,7.104

4,69

4.93.104



12 Mg

6,00

1,0.108

6,00

1 ,00.104



13 А1

4,84

6,9.104

4,89

7,81.104



14 Si

6,34

2,2.106

6,01

1,04. 104





5,88

7,6.105







15 Р

3,98

9,6.103

3,72

5,23.102



16 S

5,94

8,7.105

5,00

1,01.102



17 Сl





2,50

3,20.102



19 К

3,34

2,2.103

3,55

3,52.102



20 Са

4,68

4,8.104

4,75

5,66.104



21 Sc

1,49

3,1.101

1,46

2,88.101



22 Ti

3,45

2,8.103

3,34

2,20.102





3,27

1 ,9.103







23 V

2,81

6,5.102

2,35

2,23.102



24 Cr

3,76

5,8.103









3,65

4,5.103

3,97

9,35.102



25 Mn

3,49

3,1. 103

3,87

7,37.102



26 Fe

5,44

2,8.105

5,84

6,96.101



27 Co

3,34

2,2.105

3,28

1, 92.103



28 Ni

4,41

2,6.104

4,60

4,00.104



29 Cu

3,09

1,2,103

2,49

3,06.102



30 Zn

2,16

1 ,4.102

2,09

1,24.102



31 Ga

1 ,36

2,3.101

1 ,06

1,16.101



32 Ge

1,13

1,3.101

1 ,35

2.23.101



33 As





0,64

4,32



34 Sc

-

-

1,31

2.05.101



35 Br

_

-

1,78

6,08.10-1



37 Rb

1,12

1 ,3.101

0,75

5,69



38 Sr

1 ,66

4.6.101

1.27

1 ,85.101



39 Y

1 ,84

6,9.101

0,56

3,64



40 Zr

1,29

2,0.101

1,09

1,24.101



41 Nb

0,94

8,7

-0,28

5,23.10-1



42 Mo

0,94

8,7

0,40

2,53



44 Ru

0,46

2,9

0,20

1 ,60



45 Rh

0,01

1,0

-0,51

3,15.10-2



46 Pd

0,21

1,6

0,18

1,52



47 Ая

-0,61

2,4.10-1

-0,82

1,50.10-1



48 Cd

0,18

1,5

-1,14

7,21.10-3



49 In

0,09

1 ,2

-2,85

1,41 .10-3



50 Sn

0.18

1,5

0,83

6,83





0,69

4,9







51 Sb

0,58

3,8









-0,94

1,1*10-1

- 0,88

1,33.10-1



52 Те





0,28

1 ,90



53 I

_



-1 ,71

5,11.10-1



55 Cs

_



-0,91

1 ,22.10-1



56 Ba

0,74

5,5

0,85

7,08



57 La

0,67

4,7

-0,46

3,50.10-1



58 Ce

0,42

2,6

-0,24

5,78.10-1



59 Pr

0,09

1,2

-0,94

1 ,15.10-1



60 Nd

0,57

3,7

-0,17

6,74.10-1



62 Sm

0,26

1 ,8

-0,67

2.16.10-1



63 Eu

-0,40

4,0.10-1

-1,07

8,53.10-2



64 Gd

-0,23

5,9.10-1

-0,39

4,12.10-1



65 Tb

-



-1,29

5,10.10-2



66 Dy

-0,36

4,4.10-1

-0,46

3,49.10-1



67 Ho





-1,16

6,88.10-2



68 Er





-0,71

1 ,94.10-1



69 Tm





-1,42

3,84.10-2



70 Yb

0,17

1,5

-0,73

1,87.10-1



71 Lu

1,49



-1,49

3,24.10-2



72 Hf





-0,74

1,82. 10-1



73 Та





-0,75

1,79.10-1



74 W



_

-0,58

2,64.10-1



75 Re



_

-0,76

1,74.10-1



76 Os





-0,22

5.96.10-1



77 Ir



_

-0,38

4.22.10-1



78 Pt



_

0,22

1,66



79 Au





-0,79

1,65.10-1



80 HS



_

-0,09

8,08.10-1



81 Tl





-2,63

2,38.10-3



82 Pb

0,27

1,9

-0,81

1,56.10-1



83 Bi





-1 ,63

2,33.10-2



90 Th





-1,55

2,79.10-2



92 U





-1,99

1 ,02.10-2




















Цифры со стрелками обозначают поля элементов (оконтурены жирной линией): / - литофильных; 2 - халькофильных; 3 - сидеро-фильных. Для каждого элемента приведены значения атомного радиуса (0) и ионных радиусов при различных валентностях и координационных числах (обозначены римскими цифрами). Звёздочка обозначает пара- или ферромагнитное состояние переходных элементов; отсутствие звездочки - диамагнитное состояние. Атомные радиусы даны по Дж. Слейтеру, ионные - по Р. Д. Шеннону и

К. Г. Превитту, ионные (в скобках) - по Л. Аренсу.
Отношение силикатной и металлич. фаз в разных метеоритах варьирует. Мн. учёные, исходя из аналогии с метеоритами, считают, что планеты земного типа имеют также силикатную фазу и металлич. ядро, причём отношения между этими фазами у разных планет различны. По этой гипотезе, Земля имеет ок. 31% металлич. фазы, или ок. 40% Fe (включая окисленное).

Распределение химических элементов. Земля, как и др. планеты земного типа и Луна, имеет оболочечное строение; она состоит из ряда геосфер: ядра, мантии, земной коры, гидросферы и атмосферы (см. Земля). Твёрдые оболочки Земли, слагающие их горные породы, парагенетич. ассоциации минералов и т. п., как правило,- сложные многокомпонентные силикатные системы. Процессы, при к-рых они образуются, идут с конечными скоростями и являются необратимыми. В Г. мы встречаемся с неравновесными системами, к-рые характеризуются массой, объёмом, энтропией, давлением, темп-рой, хим. потенциалами. Для применения термодинамики в Г. необходимо знать поведение конкретных фаз, компонентов и систем в условиях геол. обстановки, в частности в большом диапазоне давлений и темп-р. Так, напр., общее представление о направлении геохим. процесса даёт Ле Шателье - Брауна принцип, согласно к-ро-му в любой системе, находящейся под действием внеш. сил, изменение к.-л. внеш. фактора вызывает превращение, направленное на компенсацию действия этого фактора. По действующих масс закону изменение активности одного из компонентов системы смещает равновесие. Напр., в реакции

равновесие смещается вправо, т. к. ангидрит выпадает из раствора. В реакции

начинающейся при темп-ре выше 350 0С, равновесие сдвигается вправо, т. к. одновременно с отложением минерала вол-ластонита СаSiO3 образуется углекислота, удаляющаяся из системы. С повышением темп-ры в реакциях с участием газовой фазы равновесие смещается в сторону меньшего объёма газовых компонентов. Напр., в реакции

равновесие сдвигается вправо. Высокое давление (газовое и литостатическое) изменяет направление и характер кристаллизации магмы.

Рис. 1. Распространённость химических элементов на Солнцеи в каменных метеоритах (хондритах); по оси абсцисс - порядковые номера элементов, по оси ординат- число атомов данного элемента на 10* атомов Mg.

Условия равновесия подчиняются также правилу фаз Гиббса (см. фаз правило), согласно к-рому число термодинамических степеней свободы системы f = k- -п + 2, где n- число фаз в системе, k - число компонентов. Поскольку в закрытой системе число степеней свободы f =< 2 (давление и темп-pa), то число фаз n>=k. Это минералогич. правило фаз, впервые в Г. применённое В. М. Гольдшмид-том, оправдывается для разнообразных горных пород.

Закономерности распределения отдельных элементов по многочисленным фазам - минералам зависят гл. обр. от строения внешних электронных оболочек атомов. В Г. поэтому широко используются закономерности, установленные кри-сталлохимией. Ионы и атомы в кристал-лич. решётках имеют разные радиусы Ri. Величина Ri связана с положением хим. элемента в системе Менделеева. По вертикальным группам Ri обычно растёт с увеличением атомной массы и уменьшается с увеличением валентности иона в пределах периода (см. табл. 2 на стр. 331).

В природных процессах разделения ионы и атомы сортируются по своим размерам. Кристаллич. решётки гл. породообразующих минералов принимают одни ионы (или атомы) и не принимают другие, в зависимости от их величины, заряда и др. свойств. Если ионы разновалентны, но имеют близкий размер Ri, в решётку чаще всего входит ион с большим зарядом. Если ионы имеют одинаковую валентность и по размеру различаются не больше чем на 15%, они часто изоморфно замещаются в кристаллич. решётках; происходит замещение атома атомом, иона ионом или группы атомов группой атомов, в зависимости от типа решётки, размеров Ri, заряда и т. д. (см. Изоморфизм). Изоморфное замещение играет огромную роль в распределении элементов по различным минералам. Использование R, в Г. объяснило причину ассоциации таких разнородных элементов, как U, Th и редкоземельных элементов (в минералах то-рианит, иттриалит и др.), а также постоянную ассоциацию редкоземельных элементов. При деформации одного иона другим в соединении, имеющем катион малого радиуса и анион большого радиуса, возникает т. н. поляризация, к-рая нарушает физ.-хим. свойства вещества - твёрдость, летучесть и мн. др. Отношение Ri, катиона / Ri аниона определяет число атомов, окружающих центральный атом в соединении, - его координацию, т. е. координационное число. Оно в свою очередь указывает на характер и строение кристаллич. решётки. Координац. число может изменяться в зависимости от условий образования минерала. Кристаллич. решётки минералов имеют различную структуру - от очень простых и симметричных построек из плотно упакованных шаров до весьма сложных с низкой степенью симметрии. При кристаллизации атомы и ионы стремятся расположиться в кристаллической решётке таким образом, чтобы была минимальной энергия кристаллической решётки. На основе всех этих данных была создана геохимическая классификация элементов, опирающаяся на физико-химические свойства химических элементов (табл. 3).


Табл. 3. - Геохимическая классификация химических элементов
Сидерофиль-ные (железо)

Хал ькофил ь-ные (сульфиды)

Литофильные (силикаты и др.)
Fe, Ni, Co, Ru, Rh, Pd, Os, Ir, Pt, (Mo), Au, Re, (P),(As), (C), (Ge), (Ga),(Sn), (Sb), (Cu)

S,Se, Те, Си, Zn, Cd, Pb, Sn.Mo, Ge, As, Ga, Sb, Bi, Ag, Ни, In, Tl, (Fe),(Ni),(Co)

Н, О, N, Si, Ti, Zr, Hf, F, Cl, Br, I, B, Al. Sc, Y, Li, Na, K, Rb, Cs, Be,Mg,Ca,Sr,Ba,Ra, V, Cr, Mn, W, Th, Nb, Та, U, Ac, Pa, (S),(P),(Sn),(C).(Ga), (Fe), (Ni),(Co),

редкоземельные элементы

С открытием изотопов стала развиваться Г. изотопов - изучение процессов разделения изотопов хим. элементов в природных процессах, особенно лёгких атомов Н, С, О, N, S и др. Этим методом часто удаётся установить способ и условия разделения хим. элементов и образования конкретных минералов и рудных залежей.

Геохим. процессы разделения элементов на Земле поддерживаются прежде всего теплом, генерируемым радиоактивными элементами (радиогенное тепло), гравитационной энергией. На поверхности Земли значит, роль играет энергия солнечных лучей, к-рая, в частности, трансформируется живым веществом в хим. энергию нефтей и углей.

Геохимические процессы. Первичное разделение холодного недифференцированного вещества Земли на оболочки произошло под влиянием тепла адиабатич. сжатия планеты и радиогенного тепла. В мантии Земли на различных глубинах, особенно в астеносфере, возникали многочисл. расплавл. очаги. Разделение на оболочки шло путём зонного плавления, к-рое не требует полного расплавления мантии. Силикатное вещество планеты разделялось на тугоплавкую фазу - ультраосновные породы верхней мантии, и легкоплавкую фазу - основные породы (базальты) земной коры. Легкоплавкое вещество проплавляло кровлю магматич. камеры, а тугоплавкое кристаллизовалось на дне камеры; т. о. легкоплавкое вещество перемещалось вверх к поверхности Земли. При этом метасиликаты инконгруентно разлагались на ортосиликаты и кремне-кислоту, обогащённую хим. элементами, понижающими темп-ру плавления: щелочными элементами, Si, Ca, Al, U, Th, Sr и др. редкими литофильными элементами. Вещества, повышающие темп-ру плавления (Mg, Fe, Ni, Co, Сr и др.), сохранились по преимуществу в тугоплавкой фазе, т. е. остались в мантии Земли. Вместе с зонным плавлением шёл процесс дегазации верх, мантии.
Табл. 4. - Химический состав горных пород Земли, Луны и метеоритов



Окислы и элементы

Каменные метеориты (хондриты)

Ультраосновные породы Земли

Примитивные базальты Земли (толеитовые)

Эвкриты (базаль-тич. кам. метеориты)

Породы поверхности Луны

Средний состав осадочных пород Земли

Граниты Земли



кристаллические (базальт)

тонко диспергированные (реголит)



"Аполлон-12"

"Луна-16"

<• Аполлон-12"

"Луна-16"



В % по массе



SiO2

38,04

43,54

50,83

48,5

40

43,8

42

41,7

46,20

70,8



ТiO2

0,11

0,05

2,03

0,6

3,7

4,9

3,1

3,39

0,58

0,4



Аl2O3

2,5

3,90

14,0

12,96

11,2

13,65

14

15,33

10,50

14,6



FeO

12,45

9,84( + 2,51 Fe2O3)

9,0 ( + 2,88 Fe2O3)

17,6

21,3

19,35

17

16,64

1,95 (+3,3 Fе2О3)

1,8 ( + 1,6 Fe2O3)



MgO

23,84

34,02

6,34

8,28

11,7

7,05

12

8,78

2,87

0,9



CaO

1,95

3,46

10,42

10,23

10,7

10,4

10

12,49

14,0

2,0



Na2O

0,98

0,56

2,23

0,75

0,45

0,38

0,40

0,34

1,17

3,5



K2O

0,17

0,25

(0,16)

0,24

0,065

0,15

0,18

0,10

2,07

4,0



MnO

0,25

0,21

0, 18

0,43

0,26

0,20

0,25

0,21

0,16

0, 10



Cr2О3

0,36

0,34

0,4

0,38

0,55

0,28

0,41

0,28

0,09

0,07



ZrO

0,004

0,004

0,01

0,006

0,023

0,04

0,09

0,013

0,01

0,003



10-4 % п о массе



Rb

5

1

1,2

0,2

0,65



3,2

5,9

200

200



Ва

6

1

14

30

72

206

420

114

500

800



Sr

10

10

130

80

145

445

170

169

300

700



Y

2,0

1

43

22

50

54

13

58

30

30



V

70

40

290

50

88

425

64

61

100

40



Sc

6

1.5

61

35

50

20

47

27

10

3



Ni

13500

2000

97

1000

54

147

200

190

45

8



Co

800

200

32

40

40

29

42

53

10

5



Li

3

0,5

9

3

5,5



11

10

40

40



Th

0,05

0,015

~0,5

0,5

0,9

1,1

6

0,5

10

18



U

0,025

0,005

~0,1

0,2

0,25

0,2

1,5

0,1

3

3,5






Процессы выплавления и дегазации вещества мантии имеют периодич. характер. После того как произошёл вынос тепла и вещества из глубин на поверхность Земли, требовалось время на новое разогревание очага. С таким геохимич. циклом связан весь ритм тектоно-магма-тич. и вулканич. деятельности и мета-морфич. преобразований. Этот процесс шёл также на Луне и, по-видимому, на всех планетах земного типа. Хим. эволюция Земли поддерживается и регулируется непрерывным процессом выплавления и дегазации вещества мантии за счёт энергии радиоактивного распада.

Вещество мантии Земли (перидотиты, дуниты и др. ультраосновные породы) имеет хим. состав, приближающийся к метеоритному (табл. 4). Господствующие в мантии высокие темп-ры и давления приводят к полиморфным изменения