загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

в конидиальной стадии, мицелий развивает внутри тканей. Г. р. распространяются с семенами и остатками растений. Наиболее вредоносны следующие Г. р. Полосатая пятнистость ячменя (возбудитель - Н. gramineum) - одна из наиболее вредоносных болезней этой культуры; листья покрываются продолговатыми пятнами, нередко тянущимися от верхушки до основания, окаймлёнными тёмным ободком. Листья размочаливаются, буреют и засыхают. Зерновки в зоне зародыша чернеют. Сетчатая пятнистость ячменя (возбудитель - Н. teres) характеризуется появлением на листьях овальных бурых с бледно-жёлтым ободком пятен с продольными и поперечными тёмно-бурыми полосами; на поражённом зерне - коричневая кайма вокруг зародыша. При гельминтоспо-риозе овса (возбудитель - Н. avenае) листья покрываются продолговатыми узкими пятнами с красно-бурой каймой; на зёрнах темнеет зародыш. Гельминтоспориоз кукурузы (возбудитель - Н. turcicum) поражает также сорго и суданскую траву. На листьях появляются тёмные продолговатые пятна, к-рые достигают иногда дл. 10 - 20 см. Ткань внутри пятен засыхает, белеет, вокруг пятен остаётся красновато-коричневая кайма. При гельминтоспориозе риса (возбудитель - Н. oryzae) всходы у корневой шейки покрываются серо-оливковым бархатистым налётом, листья - мелкими тёмно-коричневыми пятнами. Посевы сильно изре-живаются. Гельминтоспориоз мака (возбудитель - Н. papaveris) - одна из наиболее вредоносных болезней мака. Всё растение покрывается бурыми пятнами. Поражённые семена тёмно-коричневые.

Меры борьбы: агротехнич. мероприятия, ускоряющие минерализацию стерни; уборка и уничтожение растительных остатков; очистка, сортировка и протравливание семян и др.

И. С. Узунов.

ГЕЛЬМИНТЫ (от греч. helmins, род. падеж helminthos - червь, глист), паразитические черви, возбудители мн. болезней человека, животных и растений. Заболевания, вызываемые Г., наз. гельминтозами. Известно более 12 тыс. видов Г. К Г. относятся: 1) плоские черви (подтип Plathelminthes) - нек-рые представители ресничных червей, все удонеллиды, темноцефалы, трематоды (дигенетич. сосальщики), моногенетические сосальщики, гирокотилиды и ленточные черви; 2) первичнополостные черви (тип Nemathelminthes) - мн. круглые черви, волосатики и все колючеголовые черви; 3) кольчатые черви (подтип Annelida) - немногие представители многощетинковых червей и малощетинковых червей и нек-рые пиявки. Назв. Г. было предложено Гиппократом. Отрасль, изучающая Г., наз. гельминтологией.

А. В. Иванов.

ГЕЛЬМОЛЬД, Хельмольд (Helmold) (ок. 1125 - после 1177), немецкий священник и миссионер из Гольштейна, автор т. н. Славянской хроники, в к-рой описал захват герм, феодалами земель полабских славян, их колонизацию и христианизацию. Для части хроники (9-11 вв.) Г. использовал гл. обр. соч. Адама Бременского, но события 12 в. (до 1171) описаны им на основании собств. наблюдений и сведений, полученных от современников. Хроника Г., несмотря на ярко выраженную тенденциозную нем.-католич. точку зрения и фактич. неточности,- один из главных (а для нек-рых моментов единственный) источников по истории полабских славян; продолжена (до 1209) Арнольдом Любекским.

Соч.: Славянская хроника, [Предисл., пер. с лат. и прим. Л. В. Разумовской], М., 1963.

Лит.: Егоров Д. Н., Славяно-германские отношения в средние века. Колонизация Мекленбурга в XIII в., т. 1-2, М., 1915.

ГЕЛЬМОНТ, Хелмонт (Helmont) Ян Баптист ван (янв. 1579, Брюссель.-30.12.1644, Вилворде, близ Брюсселя), голландский естествоиспытатель, один из представителей ятрохимии. В ботанике Г. впервые проводил экспериментальные исследования процесса питания растений, к-рые стали основой для т. н. водной теории питания растений. Несмотря на ошибочность, эта теория, рассматривавшая жизнь растений как процесс, происходящий только под влиянием материальных сил, нанесла удар религ. -идеалистич. мировоззрению. Г. полагал, что в пищеварении решающую роль играет кислота желудочного сока, и поэтому предлагал лечить щелочами болезни, вызываемые избытком кислот в желудке. Ввёл в химию термин газ. В ряде вопросов стоял на позициях алхимии, считая, напр., возможным превращение неблагородных металлов (ртути, свинца и др.) в золото при помощи т. н. философского камня. Признавал самопроизвольное зарождение, что для того времени было прогрессивным. Г. придерживался виталистич. представлений о том, что жизненные процессы якобы регулируются особыми духами жизни (археями).

Соч.: Ortus medicinae, ed. nova, Amst., 1652.

Лит.: МеншуткинБ. Н., Химияипутиеёразвития, М.- Л., 1937; Spiess G. A., J. В. van Helmont's System der Medizin..., Fr./M., 1840.

ГЕЛЬНЕР (Gellner) Франтишек (19.6. 1881, Млада-Болеслав,-13.9.1914), чешский поэт. В Париже изучал живопись. Поэзия Г. (сб. После нас хоть потоп, 1901, Радости жизни, 1903) направлена против бурж. лицемерия, проникнута анархистским пафосом разрушения, тоской по справедливым человеческим отношениям. В политич. сатирах обличал австро-венг. монархию, оппортунизм социал-демократии, иллюстрируя свои стихи меткими карикатурами. Погиб в Галиции во время 1-й мировой войны.

Соч., в кн.: Антология чешской поэзии XIX - XX вв., т. 2, М., 1959.

Лит.: Burianek Fr., Bezruc, Toman, Gellner. Sramek, Praha. 1955; Очерки истории чешской литературы XIX - XX вв., М., 1963.

ГЕЛЬСИНГФОРС (Helsingfors), шведское название города Хельсинки, столицы Финляндии.

ГЕЛЬСТЕД (Gelsted) Отто (псевд.; наст, имя и фам. Эйнар Е п п е с е н, Jeppesen) (4.11.1888, Миддельфарт,-22.12. 1968, там же), датский поэт. Коммунист. В юности увлекался философией и эстетикой левого экспрессионизма (трактат Экспрессионизм, 1919). В 1920 вышел сб. стихов Вечные вещи. В 1931 опубл. цикл антифаш. стихов К свету. Эмигрантские стихи (1945), написанные в Швеции во время эмиграции, исполнены ненависти к гитлеровским оккупантам и восхищения борцами Сопротивления. В сб-ках Годы свободы (1947), Встань и зажги свет (1948), Песни дней холодной войны (1952), Смерть в ванной (1955) и др. Г. предостерегает против возрождения фашизма. Автор сб. статей Здравствуй, жизнь (1958), сб. стихов Никогда ещё день не был так светел (1959), труда о лит. связях Дании и СССР. Сб. Стихи солнечного берега (1961) посвящён Греции. Перевёл на дат. яз. Илиаду и Одиссею.

Соч.: Udvalgte digte, Kbh., 1938; Otto Gelsted fortaeller, Kbh., 1969; врус. пер.- Стихи, М., 1958.

Лит.: КристенсенС. М., Датскаялитература 1918 - 1952, М., 1963; Hilsen til Otto Gelsted, Kbh., 1958.

Я. И. Крылова.

ГЕЛЬФАНД Израиль Моисеевич [р. 20. 8(2.9).1913, м. Окна, ныне Одесская обл.], советский математик, чл.-корр. АН СССР (1953), проф. Моск. ун-та (с 1943), президент Московского математич. об-ва (1966-70). В 1940 построил теорию коммутативных нормированных колец, к-рая послужила затем отправным пунктом в созданных Г. (совм. с М. А. Наймарком и др.) теории колец с инволюцией и теории бесконечномерных представлений групп. Др. работы Г. посвящены теории обобщённых функций, теории топологич. линейных пространств, динамич. систем, автоморфных функций, обратным задачам спектрального анализа, вычислит, методам. Имеет ряд работ по цитологии и нейрофизиологии мозжечка. Почётный иностранный член Академии искусств и наук в Бостоне (1964), Лондонского математич. об-ва (1966), Ирландской АН (1970), Нац. АН США (1970). Гос. пр. СССР (1951).

Лит.: Израиль Моисеевич Гельфанд (К пятидесятилетию со дня рождения), Успехи математических наук, 1964, т. 19, в. 3 (имеется список работ Г.).

М. А. Наймарк.

ГЕЛЬФМАН Геся Мироновна [р. между 1852 и 1855, Мозырь,- ум. 1(13).2.1882, Петербург], участница русского революц. движения, народница. Род. в евр. бурж. семье, к-рую оставила в 16 лет. В 1-й пол. 70-х гг. участвовала в революц. кружках Киева. По процессу 50-ти (1877) отбывала 2 г. заключения в Литовском замке, 14 марта 1879 была выслана в Новгородскую губ. Из ссылки бежала и в конце 1879 в Петербурге примкнула к Народной воле. По процессу первомартовцев (1881) приговорена к повешению, отсроченному из-за её беременности и затем заменённому в 1882 под влиянием кампании, поднятой в защиту Г. в заграничной печати, бессрочной каторгой. Умерла в доме предварит. заключения.

Лит.: Кантор Р. М., Г. М. Гельфман, М., 1930.

ГЕЛЬФОНД Александр Осипович [11(24). 10.1906, Петербург, -7.11.1968, Москва], советский математик, чл.-корр. АН СССР (1939). Чл. КПСС с 1940. Окончил Моск. ун-т (1927), с 1931 - профессор там же. Осн. направления науч. деятельности - теория чисел и теория функций комплексного переменного. Установил глубокие связи между аналитич. свойствами функций комплексного переменного и арифметикой. Им созданы аналитич. методы доказательства трансцендентности чисел. В работах 1929 и 1934 им решена известная проблема Эйлера - Гильберта о трансцендентности логарифмов алгебраич. чисел при алгебраич. основании, а в 1949 установлен ряд теорем о взаимной трансцендентности чисел. В теории функций наиболее известны работы Г. по интерполированию целых функций и связи между ростом целых функций и арифметич. свойствами их значений. Награждён орденом Ленина, 3 др. орденами, а также медалями.

Соч.: Трансцендентные и алгебраические числа, М., 1952; Элементарные методы в аналитической теории чисел, М., 1962 (совм. с Ю. В. Линником); Вычеты и их приложения, М., 1966; Исчисление конечных разностей, 3 изд., М., 1967.

Лит.: Пятецкий-Шапиро И. И., Шидловский А. Б., А. О. Гельфонд (К шестидесятилетию со дня рождения), Успехи математических наук, 1967, т. 22, в. 3, с. 247-54.

А. Б. Шидловский.

ГЕЛЬФРЕЙХ Владимир Георгиевич [12(24). 3. 1885, Петербург, - 7. 8. 1967,Москва], советский архитектор, Герой Социалистич. Труда (1965). Учился в петерб. АХ (1906-14) у Л. Н. Бенуа. Будучи студентом, начал работать с В. А. Щуко, а с 1918 до 1939 они выступают как соавторы ряда обществ, сооружений в Ленинграде (пропилеи у Смольного, 1923-25), Москве (новое здание Библиотеки СССР им. В. И. Ленина, 1928-40), Ростове-на-Дону (Драматич. театр им. А. М. Горького, 1930-35). С 1935 Г. активно участвует в реконструкции столицы - строительстве мостов (Большой Каменный, 1936-38, с В. А. Щуко, М. А. Минкусом), ВСХВ (1939), метрополитена (наземный вестибюль станции Новокузнецкая, 1943-44, с И. Е. Рожиным; станция Электрозаводская, 1944,- Гос. пр. СССР, 1946), высотных зданий (Мин-во иностр. дел на Смоленской пл., 1948-52, с М. А. Минкусом; Гос. пр. СССР, 1949). В 1950-60-х гг. Г. руководил созданием ансамблей Смоленской пл. и Кутузовского проспекта, строительством жилых массивов Кунцево, Фили - Мазилово, Рублёво. Был проф. ленингр. АХ (1918-35), Моск. высшего художеств.-пром. уч-ща (1959-67). Награждён 2 орденами Ленина, 5 др. орденами, а также медалями. Портрет стр. 201. В. Г. Гельфреих. Здание Министерства иностранных дел на Смоленской площади в Москве. 1948 - 52.

Лит.: Пекарева Н., Владимир Георгиевич Гельфрейх, Архитектура СССР, 1960, № 6, с. 51-54.

ГЁЛЬЦ, Хёльц (Holz) Макс (14.10. 1889, Мориц, близ Ризы, -15.9.1933, г. Горький), немецкий революционер. Чл. Коммунистич. партии Германии (КПГ) с 1919. В 1918-19 пред, рабочего совета в Фалькенштейне (Ср. Германия). Во время Капповского путча 1920 руководитель вооружённых рабочих отрядов в Фогтланде (Ср. Германия), боровшихся против реакционеров. Для действий Г. было характерно проявление анархистских тенденций. За отказ подчиниться директивам компартии исключался из её рядов, в 1922 снова вступил в КПГ. В дни мартовских боёв 1921 в Ср. Германии возглавлял сформированные им боевые отряды, сражавшиеся против жандармерии и правительств, войск. После подавления восстания в Ср. Германии был арестован, ложно обвинён в уголовном преступлении и приговорён к пожизненному заключению. В 1928 в результате массового движения в защиту политич. заключённых амнистирован. С 1929 жил в СССР.

Соч. в рус. пер.: От белого креста к красному знамени, М.- Л., 1930; Жизнь - борьба, Л., 1929.

Лит.: Unter der roten Fahne, всб.: Erinnerungen alter Genossen, В., 1958, S. 197 - 203.

В. Д. Кулъбакин.

ГЕЛЬЦЕР Екатерина Васильевна [2(14).11.1876, Москва,-12.12.1962, там же], советская артистка балета. В 1925 первой из артисток балета удостоена звания нар. арт. РСФСР. Дочь известного танцовщика В. Ф. Гельцера. В 1894, окончив Моск. балетную школу, была принята в труппу Большого театра. В 1896-98 артистка Мариинского театра (Петербург). Большое влияние на творчество танцовщицы оказал балетм. М. И.Пе-типа, в постановках к-рого она выступала в ведущих партиях. В 1898-35 работала в Большом театре, была основной исполнительницей в балетах А. А. Горского. Г.- выдающаяся представительница рус. школы классич. танца. В её исполнении соединялись безукоризненная техника, музыкальность, танцевальная выразительность и глубокое проникновение во внутр. жизнь сценич. образа. Лучшая партия, созданная Г. в дореволюц. время,- Саламбо (Саламбо Арендса, 1910), утверждавшая в балете реалистич. иск-во, психологич. правду. С 1910 гастролировала за рубежом (выступала в антрепризеС. П. Дягилева). В 1927, в балете Красный мак Глиэра - первом сов. балете, посвящённом совр. тематике,- артистка создала образ кит. танцовщицы Тао Хоа. В этой партии принципы классич. балета нашли своё выражение в образе нового социального героя. В 30-е гг. гастролировала по Сов. Союзу, выступала в заводских клубах, в отдалённых уголках страны. В 1942-44 состоялись последние выступления Г. Среди партий: Лиза (Тщетная предосторожность Гертеля), Медора (Корсар Пуни и Адана), Одетта-Одиллия (Лебединое озеро Чайковского). Г. вела консультативно-педагогич. работу. Гос. пр. СССР (1943). Награждена орденом Ленина и орденом Трудового Красного Знамени.

Лит.: Московский Большой театр. 1825- 1925. М., [1925]; Мартынова О., Екатерина Гельцер, М., 1965.

ГЕМ (от греч. haima - кровь), небелковая часть (т. н. простетическая группа) гемоглобина- его красящее вещество. По химич. природе Г. -соединение протопорфирина с двухвалентным железом.

В организме позвоночных Г. синтезируется из более простых азотистых соединений (глицина и сукцината) и из резервного железобелкового комплекса - ферритина, находящегося в селезёнке, печени, костном мозге. Г., выделенный из крови различных позвоночных животных, имеет одинаковую химич. структуру:

Свободный Г. легко окисляется на воздухе догематина, в к-ром атом железа трёхвалентен. Многолетние исследования структуры Г. завершились синтезом гемина - солянокислого гематина (Г. Фишер, 1929).


0615.htm
ГЕНЕРИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ, процесс преобразования различных видов электрич. энергии в энергию электрич. (электромагнитных) колебаний. Термин "Г. э. к." применяется обычно к колебаниям в диапазоне радиочастот, возбуждаемым в устройствах (системах) с сосредоточенными параметрами (ёмкостью С, индуктивностью L, сопротивлением R), где электрич. и магнитные поля пространственно разделены. При переходе к более высоким частотам (СВЧ и оптич. диапазон) для возбуждения колебаний необходимы системы с распределёнными параметрами. В этом случае говорят об электромагнитных колебаниях. Термин "Г. э. к.", как правило,не применяется, когда речь идёт о получении переменных токов пром. частот,получаемых с помощью электрич. машин (см. Генератор электромашинный, Переменного тока генератор),

Г. э. к. осуществляется обычно либо путём преобразования энергии источников постоянного напряжения при помощи электронных приборов (вакуумных, газоразрядных и твёрдотельных), либо путём преобразования первичных электрич. колебаний в колебания требуемой частоты и формы (параметрический генератор, квантовый генератор).

В зависимости от типа электронных приборов различают: ламповые генераторы (с электронными лампами), полупроводниковые генераторы (с полупроводниковыми триодами, туннельными диодами и др.), генераторы с газоразрядными приборами (тиратронами и др.). По форме колебаний, частоте, мощности и назначению различают: генераторы синусоидальных (гармонических) колебаний, генераторы колебаний специальной формы, генераторы сверхвысоких частот и т. д.

Необходимые элементы генератора: источник энергии, цепи, в к-рых возбуждаются и поддерживаются колебания (пассивные цепи) и активный элемент, преобразующий энергию источника питания в энергию генерируемых колебаний. Активным элементом обычно являются электронные приборы, часто в сочетании с управляющими ими дополнит, цепями (цепями обратной связи).

Если энергия, подводимая в пассивные цепи, превосходит потери энергии в этих цепях, то любой возникший в них коле-бат. процесс будет нарастать. Если поступление меньше потерь, колебания затухают. Энергетич. равновесие, соответствующее стационарному режиму Г. э. к., осуществимо лишь при наличии нелинейных свойств у элементов системы. При их отсутствии в системе возможен либо нарастающий, либо затухающий колебательный процесс, а генерация стационарных электрич. колебаний невозможна (см. ниже).

Если цепи, в к-рых возбуждаются и поддерживаются колебат. процессы, сами по себе обладают колебат. свойствами (напр., колебательный контур или объёмный резонатор), то частота и форма генерируемых колебаний в основном определяются частотой и формой их собственных колебаний. Роль активного элемента в этом случае сводится лишь к подкачке энергии в цепи для компенсации потерь в них (включая отбор энергии потребителем). Генераторы почти гармонических колебаний. Если в генераторе с колебат. цепями потери в контуре или резонаторе малы (высокая добротность колебательной системы), то форма колебаний в них близка к синусоидальной и их наз. генераторами почти гармонических колебаний или томсоновскими генераторами.

Ламповый генератор. Простейший ламповый генератор почти гар-монич. колебаний состоит из колебат. контура и электронной лампы (напр., триода) с питанием и управляющей цепью (рис. 1). В контуре под влиянием случайных электрич. колебаний возникают собственные колебания тока и напряжения. Однако из-за потерь энергии в контуре колебания должны затухать.

Чтобы колебания не затухали, необходимо пополнять запас колебат. энергии в контуре, напр, воздействуя на него пульсирующим током с той же частотой и с определённой фазой. Это осуществляется с помощью триода. Переменное напряжение, подводимое от контура к сетке триода, вызывает изменение его анодного тока. В результате в анодном токе появляются пульсации, к-рые при правильном подборе фазы напряжения, подаваемого на сетку лампы (цепь обратной связи), будут пополнять колебат. энергию контура.

Рис. 1. Простейший ламповый генератор почти гармонических колебаний; LC- колебательный контур (С - ёмкость, L - индуктивность); Uа-анодное напряжение.

Если усилительные свойства лампы таковы, что пополнения колебательной энергии превосходят потери колебат. энергии за то же время в самом контуре, то амплитуда начальных колебаний, возникших в контуре, будет нарастать. По мере роста амплитуды колебаний усиление лампы уменьшается за счёт нелинейности вольтамперной характеристики триода и в системе установится стационарная амплитуда генерируемых колебаний. Подобные системы, генерирующие стационарные колебания, частота и форма к-рых определяются свойствами самой системы, наз. автоколебательными системами или автогенераторами, а генерируемые ими колебания - автоколебаниями.

Мощность, подводимая от источника питания, расходуется не только на поддержание колебаний в контуре, но и на разогрев анода лампы электронами, бомбардирующими его при протекании анодного тока. Это обстоятельство ограничивает кпд ламповых генераторов, к-рый может всё же достигать 70-75%.

Управление электронной лампой с помощью цепи обратной связи может осуществляться различными способами. Наряду с индуктивной обратной связью (рис. 1) возможна также ёмкостная обратная связь (рис. 2, а) или автотрансформаторная обратная связь (рис. 2, б).

В схемах ламповых генераторов часто применяются т. н. параллельное питание анодной цепи

Рис. 2. Генераторы с ёмкостной (а) и авто-т р ансформатор-ной (б) обратной связью.

(рис. 2,а,б) иавтоматич. смещение сетки, создаваемое сеточным током ic. Ток ic создаёт постоянное напряжение на управляющей сетке лампы, смещающее рабочую точку анодно-сеточ-ной характеристики в область отри-цат. значений, что необходимо для получения высокого кпд (рис. 3).

Рис. 3. Схема лампового генератора с автоматическим смещением сетки.

Мощность ламповых генераторов -от долей вт (в измерит, и калибровочных устройствах) до десятков и сотен квт; область генерируемых частот - от десятков кгц до Ггц. Верхняя частотная граница связана, во-первых, с наличием у ламп "паразитных" ёмкостей (сетка - анод и др.), с конечным временем пролёта электронов от катода к аноду, а также с нек-рыми др. факторами (см. Электронная лампа). Нижняя частотная граница обусловлена малой добротностью колебательных контуров с низкими собственными частотами.

Рис. 4. Транзисторные генераторы на плоскостных триодах с индуктивной (а), автотрансфор -матерной (б) и ёмкостной (в) обратной связью.

Транзисторный генератор. Другим примером генератора почти гармонич. колебаний является генератор на полупроводниковом триоде (транзисторный генератор). Здесь, так же как и в ламповом генераторе, имеется источник питания, добротный колебат. контур, а активный элемент представляет собой сочетание полупроводникового триода и цепь обратной связи. В полупроводниковых триодах (транзисторах) имеет место усиление мощности колебаний, подводимых к управляющему электроду (напр., к базе), и это позволяет, так же как и в случае электронных ламп, с помощью цепи обратной связи осуществить подкачку колебат. энергии в контур для его возбуждения и поддержания режима стационарных (незатухающих) колебаний. Существуют различные схемы транзисторных генераторов. Три варианта полупроводниковых генераторов, использующих включение транзистора по схеме с общим эмиттером, показаны на рис. 4,а,б,в.

Транзисторные генераторы генерируют колебания с частотой от неск. кгц до 1010гц с мощностями от десятых долей мет до сотен em. Как и в ламповом генераторе, здесь при высокой добротности контура форма колебаний близка к гармонической, а частота определяется собственной частотой колебаний контура с учётом "паразитных" ёмкостей транзистора.

Отрицательное дифференциальное сопротивление. Возникновение в контуре незатухающих колебаний можно рассматривать как результат внесения в него нек-рого "отрицательного" сопротивления, компенсирующего положительное активное сопротивление. В ламповом генераторе это отрицат. сопротивление создаётся лампой в сочетании с цепью обратной связи и источником питания. В отрицат. сопротивлении увеличение тока должно соответствовать уменьшению падения напряжения:

(в обычных сопротивлениях ).

Эффект появления отрицательного дифференциального сопротивления возникает лишь при использовании усилительных свойств лампы или транзистора за счёт положительной обратной связи.

Однако существуют приборы, в к-рых вольтамперная характеристика при определённых условиях имеет падающий участок. Это соответствует тому, что в нек-рой области значений U и I имеет место отрицат. дифференциальное сопротивление (рис. 5), позволяющее использовать подобные приборы для Г. э. к. На.пр., в пентодах зависимость тока экранирующей сетки iэ от напряжения на антидинатронной сетке Us имеет падающий участок (рис. 6, а). Возникновение отрицательного сопротивления позволяет создать генератор, наз. транзитронным (рис. 6,6). В транзитронном генераторе колебания в контуре LC поддерживаются также за счёт отрицательного сопротивления, вносимого в контур действием тока экранирующей сетки лампы, управляемого напряжением на третьей антидинатронной сетке.

Рис. 5. Вольт-амперная характеристика с падающим участком.

Рис. 6. a - зависимость тока экранной сетки пентода от напряжения на его антидннатронной сетке; 6 - схема транзитронного генератора.

Для создания отрицательного сопротивления можно использовать электрический разряд в газах, вольтампер-ная характеристика которого имеет падающий участок. Напр., в определённых режимах дугового разряда с увеличением тока I возрастает темп-pa дуги, увеличивается количество ионов в разрядном промежутке и за счёт этого сопротивление промежутка падает, что приводит к уменьшению падения напряжения между электродами U. Это свойство дугового разряда использовалось в дуговых генераторах высокой частоты, применявшихся до появления ламповых генераторов (рис. 7, а, б).

Рис. 7. а-вольт-амперная характеристика электрической дуги; б - дуговой генератор.

Подобным же образом может быть использована падающая характеристика туннельного диода ТД (рис. 8, а). Если рабочая точка на характеристике диода находится на падающем участке его характеристики, то это соответствует введению в колебат. контур отрицат. сопротивления.

Если колебат. контур обладает высокой добротностью, то генерируемые колебания по форме близки к гармоническим и их частота определяется собственной частотой контура с учётом дополнит, ёмкости диода (подключённого параллельно основной ёмкости С, рис. 8).

Рис. 8. а - генератор с туннельным диодом (ТД); 6 - вольтамперная характеристика туннельного диода.

Амплитуда установившихся колебаний будет определяться условием, чтобы средний наклон рабочего участка характеристики (с учётом захода колебаний за пределы наиболее крутого участка падающей характеристики) обеспечивал бы полную компенсацию потерь на активном сопротивлении контура, включая и полную нагрузку генератора Rполн. При этом генераторы с ТД могут генерировать колебания вплоть до частот 100 Ггц, нос весьма малой мощностью - порядка долей мквт. На дециметровых и сантиметровых волнах мощность таких генераторов может достигать неск. мвт. Они, будучи чрезвычайно компактными и экономичными, наиболее успешно применяются в качестве гетеродинов в радиоприёмниках СВЧ диапазона. Полупроводниковые генераторы (как и ламповые) не могут генерировать очень высокие частоты (в области сантиметровых и более коротких волн). В этой области частот используются, как правило, устройства с объёмными резонаторами (вместо контуров).

Большинство приведённых ранее понятий (активный элемент, пассивные цепи, отрицат. сопротивление и др.) в полной мере применимо лишь к устройствам, состоящим из сосредоточенных элементов (лампа, сопротивление, конденсатор, катушка индуктивности и т. д.), размеры к-рых много меньше длины волны X. Продвижение в область СВЧ привело к созданию генераторов, представляющих собой системы с распределёнными параметрами. В этих устройствах для Г. э.к. используются различные явления, возникающие в электронных потоках в вакууме, в плазме или при прохождении тока через некоторые твёрдые тела, напр, полупроводники. В этих случаях не всегда применимо само понятие элект-рич. цепи и невозможно выделять раздельно пассивные цепи и активный элемент.

Магнетронный генератор. В магнетронном генераторе колебания СВЧ возбуждаются в системе объёмных резонаторов (полости с проводящими стенками). Резонаторы расположены по окружностям массивного анода и их собственная частота v определяется диаметром полости и шириной щели, соединяющей каждую полость с общим пространством, в центре к-рого расположен катод (рис. 9). Магнитное поле, искривляя траектории электронов, движущихся от катода К к аноду А, формирует общий электронный поток, пролетающий последовательно вдоль щелей резонаторов. Магнитное поле подбирается таким, чтобы большинство электронов двигалось по траекториям, почти касающимся щелей. Т. к. в резонаторах за счёт случайных токов неизбежно возникают слабые электрич. колебания, то около щелей существуют слабые переменные электрич. поля Е. Пролетая в этих полях, электроны в зависимости от их направления относительно поля Е либо ускоряются, отбирая энергию у резонатора, либо тормозятся, отдавая часть энергии резонаторам. Электроны, ускоренные полем первого же резонатора, возвращаются на катод. Заторможенные (рабочие) электроны попадают в поле следующих резонаторов, где они также будут тормозиться, если попадают туда в "тормозящие" полупериоды электромагнитного поля. Путём соответствующего подбора скорости электронов (анодного напряжения Uа и магнитного поля Н) можно добиться того, чтобы электроны больше отдавали энергии резонаторам, чем забирали у них. Тогда колебания в резонаторах будут нарастать. Нелинейность характеристик магнетрона обеспечивает установление постоянной амплитуды генерируемых колебаний. Отбор энергии может производиться из любого резонатора с помощью петли связи П.

В магнетроне источником питания является источник анодного напряжения Ua, колебат. системой - резонаторы. Роль активного элемента, обеспечивающего преобразование постоянной энергии в энергию электрич. колебаний, играет электронный поток, находящийся под действием магнитного поля.

Рис. 9. Магнетронный генератор; А -анод; К - катод; П - петля связи.

Магнетроны генерируют гармонич. колебания в диапазоне частот от 300 Мгц до 300 Ггц. Кпд магнетронных генераторов достигает 85%. Обычно магнетроны используются для получения колебаний больших мощностей (неск. Мвт) в импульсном режиме и десятков квт при непрерывной генерации (подробнее см. Магнетрон).

Рис. 10. Клистронные генераторы; а - отражательный клистрон; б - двухрезона-торный пролётный клистрон; С - сетки резонатора; А - анод; К - катод.

Клистронный генератор. Клистронный генератор также содержит объёмный резонатор, в к-ром колебаниявозбуждаются и поддерживаются электронным потоком. Поток электронов, испускаемый катодом К (рис. 10,а),ускоряется электрич. полем, создаваемым источником питания. В отражательном клистроне электроны пролетают через сетки объёмного резонатора С и, не достигая анода А, потенциал к-рого отрицателен относительно сеток резонатора, отражаются, пролетают через резонатор в обратном направлении и т. д. Если бы электроны пролетали через резонатор сплошным потоком, то в течение одного полупсриода колебаний резонатора они отдавали бы резонаторам энергию, а в течение второго полупериода отнимали бы это же количество энергии у резонатора, и Г. э. к. было бы невозможно. Если же электроны влетают в резонатор отд. "сгустками", причём в такие моменты, когда резонатор их тормозит, то они отдают резонатору энергии больше, чем забирают у него. При этом электронный поток усиливает возникшие в резонаторе случайные колебания и поддерживает их с постоянной амплитудой. Т. к. группирование электронного потока в сгустки происходит за время, соответствующее неск. периодам колебаний, то протяжённость "пространства группировки" задаётся скоростью электронов и частотой генерируемых колебаний. Благодаря этому наибольшее распространение кли-стронные генераторы имеют в сантиметровом и миллиметровом диапазонах длин волн. Мощность клистронов невелика - от неск. мет в миллиметровом диапазоне до песк. вт в сантиметровом. Мощность двухрезонаторных пролётных кли-стронных генераторов (рис. 10, б) в сантиметровом диапазоне может составлять десятки вт (подробнее см. Клистрон).

Квантовые пучковые генераторы. В квантовых генераторах роль высокодобротной колебат. системы выполняют возбуждённые атомы или молекулы активного вещества. Переходя из возбуждённого состояния в невозбуждённое, они излучают порции (кванты) электромагнитной энергии, равные hv, где h - Планка постоянная, v - частота электромагнитных колебаний, характерная для данного сорта атомов. Источником энергии являются возбуждённые атомы и молекулы, а для отбора возбуждённых молекул служит сортирующая система. Напр., в молекулярном генераторе на аммиаке источником питания является источник молекулярного пучка аммиака. Объёмный резонатор, в котором находится активное вещество, осуществляет обратную связь, вызывая с помощью электромагнитного поля вынужденное излучение молекул и вложение колебат. энергии, компенсирующее потери, включая отбор энергии во вне. Аммиачный генератор работает на частоте 23,870 Ггц с весьма __ стабильной и узкой спектральной линией генерируемых колебаний за счёт высокой добротности квантового перехода. Высокая стабильность частоты колебаний, генерируемых квантовыми генераторами в радиодиапазоне (на аммиаке, водороде, синильной кислоте и др.), позволяет использовать их как квантовые стандарты частоты.

Релаксационные генераторы. Существует широкий класс генераторов, у к-рых пассивные цепи, где возбуждаются и поддерживаются колебания, не обладают колебат. свойствами (контуры с большими потерями и др. апериодич. цепи, напр, комбинации ёмкостей С и сопротивлений R или индуктивностей L и сопротивлений R). В подобных генераторах за каждый период колебаний теряется и вновь пополняется значит, часть всей колебат. энергии. Период генерируемых колебаний при этом определяется временем релаксации (процесса установления равновесия) в этих цепях. Такие генераторы наз. релаксационными. В этом случае форма колебаний определяется совместно свойствами колебат. цепей и активного элемента и может быть весьма разнообразной - от скачкообразных, почти разрывных колебаний (напр., мультивибраторы) до колебаний, сколь угодно близких к гармоническим (RC-генераторы синусоидальных колебаний). Эга особенность релаксационных генераторов широко используется для получения электрич. колебаний спец. формы, напр, прямоугольных импульсов, пилообразного напряжения (рис. 11) и тока, а также для генерации гармонич. колебаний звуковой и сверхнизкой частот.

Рис. 11. Пилообразное напряжение.

Тиратронный генератор пилообразного напряжения - простейший релаксационный генератор (рис. 12,а). У тиратрона напряжение зажигания выше напряжения гашения. Его напряжение U изменяется практически линейно со временем до нек-рого макс, значения, а затем достаточно быстро падает до нач. величины (рис. 11). Т. к. вольтамперная характеристика тиратрона обладает падающим участком характеристики (12,6), то процесс зарядки ёмкости С до напряжения зажигания тиратрона происходит медленно, после чего накопленный на ёмкости заряд быстро разряжается через тиратрон; напряжение на нём падает до значения, при к-ром тиратрон гаснет. При этом внутр. сопротивление тиратрона становится большим, в результате чего зарядка ёмкости С повторяется, и т. д. Период колебаний определяется временем зарядки и разрядки ёмкости, т. е. временем релаксации цепи RC.

Рис. 12. а - тиратронный генератор; 6 - вольтамперная характеристика тиратрона.

Высокую степень линейности изменения напряжения на ёмкости можно получить, применяя вместо сопротивления R в тиратронном генераторе устройство (напр., пентод), поддерживающее постоянный ток в процессе зарядки конденсатора, или применяя отрицат. обратную связь. Частотой колебаний тиратронного генератора можно (в известных пределах) управлять, подавая синхронизирующее напряжение на сетку тиратрона.

В тиратронном генераторе за период колебаний происходит полный энергообмен. Вся энергия, запасённая в конденсаторе за время зарядки, расходуется за время его разрядки через тиратрон. В этой системе нет цепей, в к-рых возможны колебат. процессы в отсутствие источников питания.

Рис. 13. Мультивибратор на транзисторах Т1 и Т2: а - схема, б - форма колебаний.

Мультивибратор на электронных лампах или транзисторах представляет собой двухтактное устройство, в к-ром Г. э. к. осуществляется путём попеременной зарядки и разрядки двух ёмкостей C1 и С2 цепей RC с помощью двух взаимосвязанных транзисторов Т1 и Т2. В симметричном мультивибраторе (рис. 13,а) транзисторы Т1 и Т2 "отпираются" и "запираются" попеременно и так же попеременно происходят зарядка и разрядка ёмкостей С1 и С2. При этом резкие скачки напряжений и токов в отд. элементах схемы соответствуют быстрой смене разряда на заряд, отпиранию и запиранию транзисторов (рис. 13, б). Однако эти быстрые процессы протекают так, что запас энергии в ёмкости изменяется непрерывно.

Различные варианты мультивибраторов применяются для получения периодич. напряжений различной формы, необходимых для работы электронных устройств. Период колебаний определяется временами релаксации цепей, содержащих транзисторы. Колебания возможны лишь за счёт поддержания в системе непрерывно сменяющихся процессов зарядки и разрядки в цепях RC, не обладающих собственными колебательными свойствами.

RC-генератор синусоидальных колебаний также не содержит колебат. цепей. Однако за счёт выбора цепи управления активным элементом (электронной лампой, транзистором) условия Г. э. к. выполняются лишь для одного гармонич. колебания с частотой, определяемой временем релаксации цепочек RC (рис. 14). Напр., в RC-генераторе с электронной лампой термистор поддерживает усиление лампы на уровне, лишь немного превышающем критич. уровень, соответствующий условию самовозбуждения. С ростом тока растёт темп-pa термистора и увеличивается его сопротивление, что, в свою очередь, ведёт к снижению крутизны характеристики лампы за счёт возникновения отрицат. обратной связи. Т. к. работа при этом происходит практически на линейной части характеристики лампы, то условия Г. э. к. будут выполняться лишь для одной частоты.

Рис. 14. RС - генератор синусоидальных колебаний; Т - термистор; r - сопротивление нагрузки.

В подобном устройстве происходит полный энергообмен за каждый период колебания. При отключении источника питания колебания исчезают, и в системе могут иметь место лишь апериодич. релаксационные процессы. С помощью RC-генератора получают гармонич. колебания в диапазоне частот от долей гц до десятков и сотен кгц. RC-генерато-ры широко применяются как источники эталонных колебаний.

Генератор Ганна представляет собой небольшой (~100 мкм) монокристалл полупроводника, через к-рый пропускается постоянный ток. При плотностях тока, создающих в полупроводнике напряжённость поля не менее 300 кв/м (3 ке/см), в объёме полупроводника возникают нестационарные процессы, приводящие к появлению сверхвысокочастотной переменной составляющей тока, текущего через полупроводник, и к возникновению на электродах переменного напряжения СВЧ (см. Ганна эффект).

В генераторе Ганна энергия источника постоянного тока преобразуется в коле-бат. энергию в кристалле, к-рый одновременно играет роль и колебат. системы, и активного элемента. Отсутствием высокодобротного резонатора можно объяснить немонохроматичность колебаний. Спектральная линия, соответствующая основной частоте, широка; кроме того, одновременно возбуждается большое число побочных частот. С помощью генераторов Ганна, к-рые могут применяться как маломощные гетеродины, удаётся осуществлять Г. э. к. частотой от 100 Мгц до 10 Гги. и мощностью до 10 Мет (при непрерывном генерировании) и сотен вт (при импульсной работе). Генераторы Ганна компактны и перспективны в микроэлектронике. Основное ограничение генерируемой мощности - нагревание кристалла при прохождении через него значит, постоянных токов.

Преобразователи частоты. К ним можно отнести нек-рые типы квантовых генераторов радиодиапазона (мазеров) и оптич. диапазона (лазеров), в к-рых создание возбуждённых состояний происходит за счёт поглощения электромагнитного излучения (накачки) с частотой, существенно превышающей частоту генерируемых колебаний. Эти генераторы можно рассматривать как вторичные, преобразующие энергию колебаний накачки в колебания определённой частоты, определяемой режимом и свойствами активного вещества. Так, в радиочастотном парамагнитном мазере накачка на частоте в 10 Ггц позволяет генерировать колебания с частотой до 5 Ггц со стабильностью частоты, определяемой лишь стабильностью темп-ры и магнитного поля (см. Квантовый усилитель).

В твёрдотельных лазерах на рубине или неодимовом стекле поглощение широкого спектра колебаний в области зелёной и синей части спектра приводит к генерации узкой спектральной линии с длиной волны лямбда = 6943 А (для рубинового лазера) и лямбда = 10 582 А (для лазера с неодимовым стеклом).

Преобразователями частоты являются также параметрические генераторы. Параметрические генераторы радиодиапазона представляют собой резонансную келебат. систему - контур или объёмный резонатор, в к-ром один из энергоёмких (реактивных) параметров L или С зависит от приложенного напряжения или протекающего тока. При периодич. изменении одной из величин С или Z, с помощью внеш. колебаний (накачки) частоты vн в контуре могут возбуждаться и поддерживаться колебания частоты v = 1/2 vH. Наиболее широко распространены маломощные параметрич. генераторы с переменной ёмкостью, созданной запертым полупроводниковым диодом спец. конструкции (параметрическим диодом). Применение многоконтурных схем позволяет генерировать колебания с частотой, не связанной жёстким соотношением с частотой накачки, и тем самым осуществлять преобразование энергии исходных колебаний одной частоты в энергию колебаний требуемой частоты (см. Параметрическое возбуждение и усиление электрических колебаний).

Аналогичный принцип используется для возбуждения колебаний оптического диапазона. Однако в этом случае параметрические явления носят волновой характер и осуществляются не в колебательном контуре, а в анизотропном кристалле (см. Параметрические генераторы света).

Лит.: Бонч-Бруевич М. Л., Основы радиотехники, М., 1936; Xаркевич А. А., Автоколебания, М., 1954; Теодорчик К. Ф., Автоколебательные системы, М., 1952: Горелик Г. С., Колебания и волны, 2 изд., М., 1959.

В. В. Мигулин.

ГЕНЕТИКА. Содержание:

Основные этапы и направления развития, предмет и методы генетики

Основные понятия и законы генетики

Генетика и эволюция

Генетика и практика

Основные центры генетических исследований и органы печати

Литература

Генетика (от греч. genesis - происхождение)- наука о законах наследственности и изменчивости организмов. Важнейшая задача Г.- разработка методов управления наследственностью и наследственной изменчивостью для получения нужных человеку форм организмов или в целях управления их индивидуальным развитием.

Основные этапы и направления развития, предмет и методы генетики

Основополагающие законы Г. были вскрыты чешским естествоиспытателем Г. Менделем при скрещивании различных рас гороха (1865). Однако принципиальные результаты его опытов были поняты и оценены наукой лишь в 1900, когда голл. учёный X. де Фриз, нем.- К. Корренс и австр. - Э. Чермак вторично открыли законы наследования признаков, установленные Менделем. С этого времени началось бурное развитие Г., утвердившей принцип дискретности в явлениях наследования и организации генетич. материала и сосредоточившей гл. внимание на изучении закономерностей наследования потомками признаков и свойств родительских особей. В развитии этого направления Г. решающую роль сыграл метод гибридологического анализа, сущность к-рого состоит в точной статистич. характеристике распределения отд. признаков в популяции потомков, полученных от скрещивания особей, специально подобранных в соответствии с их наследственными качествами. Уже в первое десятилетие развития Г. на основе объединения данных гибридологич. анализа и цитологии - изучения поведения хромосом в процессах клеточного деления (см. Митоз), созревания половых клеток (см. Мейоз) и оплодотворения - возникла цитогенетика, связавшая закономерности наследования признаков с поведением хромосом в процессе мейоза и обосновавшая хромосомную теорию наследственности и теорию гена как материальной единицы наследственности. Хромосомная теория объяснила явления расщепления, независимого наследования признаков в потомстве и послужила основой для понимания мн. фундаментальных биол. явлений. Под термином чген, введённым в 1909 дат. учёным В. Иогансеном, стали понимать наследственный задаток признака. Решающий вклад в обоснование хромосомной теории наследственности был внесён работами американского генетика Т. X. Моргана (1911) и его многочисленных сотрудников и учеников, среди к-рых прежде всего следует назвать К. Бриджеса, Г. Мёллера и А. Стёртеванта. Крупной вехой в развитии Г. стало открытие мутагенного (т. е. изменяющего наследственность) действия рентгеновых лучей (сов. учёные Г. А. Надсон и Г. С. Филиппов, 1925; амер.- Г. Мёллер, 1927). Доказав резкое увеличение изменчивости генов под влиянием внешних факторов, это открытие породило радиационную генетику. Работы по радиационному и химическому мутагенезу (сов. генетики М. Н. Мейсель, 1928; В. В. Сахаров,1933; М. Е. Лобашёв, 1934; С. М. Гершензон, 1939; И. А. Рапопорт, 1943; англ. - Ш. Ауэрбах, 1944) способствовали изучению тонкой структуры гена; велико и их практич. значение для получения новых наследственно изменённых форм растений и микроорганизмов. Важное место в развитии теории гена заняли работы сов. генетиков. А. С. Серебровским была поставлена проблема сложного строения гена. В дальнейшем (1929-31) им и его сотрудниками, особенно Н. П. Дубининым, была экспериментально доказана делимость гена и разработана теория его строения из субъединиц.

Г. сыграла большую роль в утверждении и развитии дарвиновской теории эволюции. Эволюционная Г. (в т. ч. популяционная Г.) исследует генетич. механизмы отбора, роль отд. генов, генетич. систем и мутационного процесса в эволюции. Фундаментальный вклад в разработку проблем Г. популяций внёс сов. генетик С. С. Четвериков (1926), объединивший в единой концепции идеи менделизма и дарвиновской теории эволюции. Развитию эволюционной и популяционной Г. особенно способствовали амер. учёный С. Райт и англ.-Дж. Холдейн и Р. Фишер, заложившие в 20-30-х гг. основы генетико-математич. методов и генетич. теории отбора. Для развития экспериментальной Г. популяций много сделали сов. учёные, гл. обр. Н. П. Дубинин и Д. Д. Ромашов, Н. В. Тимофеев-Ресовский, а также школа Ф. Г. Добржанского (США).

Уже на первых этапах развития Г. внесла весьма существенный вклад в теоретич. обоснование методов селекции (работы дат. генетика В. Иогансена, 1903; швед.- Г. Нильсона-Эле, 1908). Наиболее полное выражение единство Г. и селекции нашло в трудах сов. учёного Н. И. Вавилова, открывшего гомологических рядов закон в наследственной изменчивости и обосновавшего теорию центров происхождения культурных растений. Под руководством Вавилова была проведена огромная работа по исследованию мирового разнообразия культурных растений и их диких родичей и по вовлечению их в селекционную практику. С именами Г. Д. Карпеченко и И. В. Мичурина связана разработка теории отдалённой гибридизации растений. В развитие генетических основ селекции животных крупный вклад внесли сов. генетики М. Ф. Иванов, П. Н. Кулешов, А. С. Серебровский, Б. Н. Васин и др. Сов. учёный Н. К. Кольцов (1927, 1935) впервые ясно сформулировал матричный принцип репродукции молекулярной структуры наследств, материала (хромосомы как наследственные молекулы ).

Использование в качестве объектов генетических исследований микроорганизмов и вирусов (см. Генетика микроорганизмов), а также проникновение в Г. идей и методов химии, физики и математики привели в 40-х гг. к возникнове; нию и бурному развитию молекулярной генетики.

В 20-30-е гг. сов. Г. занимала ведущее место в мировой науке о наследственности и изменчивости. Начиная с 1939, а особенно после августовской сессии ВАСХНИЛ (1948) развитие сов. Г. затормозилось. С окт. 1964 вновь начался период всестороннего развития сов. Г., продолжающегося и ныне.

В совр. Г. выделилось мн. новых направлений, представляющих как теоретич., так и практич. интерес. Интенсивно развивается, в частности, направление, исследующее роль генетич. аппарата в процессах онтогенеза, что привело к расширению контактов Г. с эмбриологией, физиологией, иммунологией, медициной. Важнейшей отраслью стала генетика человека и гл. обр. такой её раздел, как генетика медицинская. Разрабатываются генетич. аспекты проблемы борьбы со злокачественными новообразованиями и преждевременным старением; активно развиваются генетика поведения животных и человека и многочисленные другие отрасли Г., тесно переплетающиеся и взаимодействующие между собой.

В модельных генетич. исследованиях широко пользуются специально созданными линиями животных и растений (дрозофил, мышей, крыс, кукурузы, арабидопсиса и др.), а также штаммами микроорганизмов, вирусов и культурами разных соматич. клеток. Всё шире привлекаются биохимич. и цитохимич. методы, оптическая и электронная микроскопия, спектроскопия, цитофотометрия, авторадиография, методы локального поражения клеточных органелл, рентгеноструктурного анализа. Для анализа результатов генетич. экспериментов, так же как и для их планирования, широко используются генетико-математич. методы (см. Биометрия).

Основные понятия и законы генетики

Совр. Г. рассматривает наследственность как коренное, неотделимое от понятия жизни свойство всех организмов повторять в ряду последовательных поколений сходные типы биосинтеза и обмена веществ в целом. Это обеспечивает структурную и функциональную преемственность живых существ - от их внутриклеточного аппарата до морфо-физиологич. организации на всех стадиях индивидуального развития. Наследственная изменчивость, т. е. постоянно возникающие изменения генотипической основы организмов, и наследственность поставляют материал, на основе которого естественный отбор создаёт многообразие форм жизни и обеспечивает поступательный ход эволюции. Одно из коренных положений совр. Г. состоит в том, что наследственная информация о развитии и свойствах организмов содержится гл. обр. в молекулярных структурах хромосом, заключённых в ядрах всех клеток организма и передаваемых от родителей потомкам. Биохимич. процессы, лежащие в основе индивидуального развития организма, осуществляются на базе поступающей из ядра информации в цитоплазматич. структурах клетки. Некоторые клеточные органеллы, в частности хлоропласты и митохондрии, обладают генетич. автономией, т. е. содержат наследственный материал. Однако в явлениях наследственности решающая роль принадлежит ядру, как это было показано, напр., в экспериментах сов. учёного Б. Л. Астаурова (см. Андрогенез).

Закономерности дискретного наследования. Один из фундаментальных принципов Г.- дискретность наследственных факторов, определяющих развитие признаков и свойств. Признаки родительских особей при скрещивании не уничтожаются и не смешиваются. Развиваясь у гибридных особей первого поколения либо в форме, характерной для одного из родителей, либо в промежуточной форме, они вновь проявляются в определённых соотношениях в последующих поколениях, как это было впервые показано Г. Менделем. Скрещивая расы садового гороха, различающиеся по окраске семядолей (жёлтые и зелёные), Мендель наблюдал, что все гибридные семена первого поколения имели жёлтые семядоли; семена второго поколения, получаемые при самоопылении растений первого поколения, имели и жёлтые и зелёные семядоли; отношение между количествами таких семян равнялось 3:1. Это явление наз. расщеплением. Признак, подавляющий у гибридов первого поколения развитие контрастирующего признака (жёлтая окраска семядолей), наз. доминантным, подавляемый признак (зелёная окраска семядолей) - рецессивным. Семена второго поколения, имеющие жёлтую окраску семядолей, генетически неоднородны. Треть этих семян константна в отношении признака жёлтой окраски семядолей, растения же, развивающиеся из остальных 2/3 жёлтых семян, при самоопылении вновь расщепляются по окраске семян в отношении 3:1. Зелёные семена генетически однородны: при самоопылении растений, развивающихся из таких семян, расщепление отсутствует и все они дают только зелёные семена.

Для удобства анализа явлений наследования признаков Мендель ввёл буквенную символику. Гены доминантных признаков обозначаются заглавными буквами алфавита, рецессивных - строчными. Наследственную основу организма, константного в отношении к.-л. доминантного признака, можно обозначить формулой А А; генетич. формула организма с рецессивным признаком - аа. При скрещивании организмов АА х аа возникает гибридная форма, наследственную основу к-рой можно выразить формулой Аа. Буквы Л и а обозначают соответственно гены, влияющие на развитие одного и того же признака, в данном примере - окраску семядолей. Организмы, несущие только гены, обусловливающие развитие доминантного (АА) или рецессивного (аа) признака, наз. гомозиготными; организмы, несущие и те и другие гены (Аа),-гетерозиготными. Гены, занимающие одно и то же положение в гомологичных хромосомах и влияющие на развитие одних и тех же признаков, наз. аллельными генами (см. Аллели). Явление расщепления признаков гибридных (гетерозиготных) организмов основано на том, что половые клетки (гаметы) гибридов несут только один из двух полученных ими от родителей аллельных генов (либо А, либо а). В этом состоит принцип чистоты гамет, отражающий дискретность структуры наследственного материала. Чистота гамет объясняется расхождением в мейозе гомологичных хромосом и локализованных в них аллельных генов в дочерние клетки, а числовые соотношения типов в потомстве от скрещивания гетерозиготных особей- равной вероятностью встречи гамет и заключённых в них генов при оплодотворении.

Если вести анализ только по одному признаку, то обнаруживаются два типа потомков: один - с доминантным, другой - с рецессивным признаком (в отношении 3:1); если же учесть генетич. структуру организмов, то можно различить уже три типа потомков:1АА (гомозиготные по доминантному признаку), 2Аа (гетерозиготные), iaa (гомозиготные по рецессивному признаку). Проведённый Менделем анализ наследования двух разных признаков (напр., окраски семядолей и формы семян гороха) показал, что в потомстве гибридных (гетерозиготных) особей имеет место расщепление по обоим этим признакам, причём оба они комбинируются во втором поколении потомков независимо один от другого. Поскольку при расщеплении по каждому признаку возникают два типа потомков в отношении 3:1, то для случая двух независимо наследуемых признаков во втором поколении - четыре типа потомков в отношении: (3 + 1) х (3 + 1) = 9 + 3 + 3 + 1, т. е.9/16 потомков с обоими доминантными признаками, 3/16 - с первым доминантным, вторым рецессивным, 3/16-с первым рецессивным, вторым доминантным,1/16- с обоими рецессивными признаками. В случаях полного доминирования можно рассчитать соотношение типов потомков от скрещивания особей, различающихся по любому числу признаков, по формуле разложения бинома (3 + 1)n;, где п - число пар генов, по к-рым различаются скрещиваемые родительские формы. Независимость наследования, т. е. свободное комбинирование, присуща тем признакам, за развитие к-рых отвечают гены, лежащие в разных (негомологичных) хромосомах. Т. о., причина независимого наследования - в независимом расхождении негомологичных хромосом в мейозе.

Последующий детальный анализ закономерностей наследования показал, что совокупность признаков организма (фенотип) далеко не всегда соответствует комплексу его наследственных задатков (генотипу), т. к. даже на одинаковой наследств, основе признаки могут развиваться по-разному под влиянием различных внешних условий. Наследственно-обусловленные признаки могут не проявиться в фенотипе либо в силу их рецессивности, либо под влиянием тех или др. факторов внешней среды. Если фенотип особи доступен непосредств. наблюдению, то о её генотипе с наибольшей полнотой можно судить на основе изучения потомков, полученных в определённых скрещиваниях. Индивидуальное развитие организмов и формирование их признаков осуществляются на основе генотипа в зависимости от условий окружающей внешней среды.

Одна из основополагающих теорий Г.- хромосомная теория наследственности. Краеугольное положение этой теории состоит в том, что за развитие определённых свойств и признаков организма ответственны строго локализованные участки - гены, расположенные в хромосомах в линейном порядке. Процесс удвоения хромосом обеспечивает также удвоение генов и передачу их в каждую вновь возникшую клетку. Гены, локализованные в пределах одной хромосомы, составляют одну группу сцепления и передаются совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов (см. Кариотип). Признаки, зависящие от сцепленных (т. с. расположенных в одной хромосоме) генов, также наследуются совместно. Сцепленное наследование признаков может нарушаться в результате кроссинговера, ведущего к перераспределению во время мейоза генетич. материала между гомологичными хромосомами (см. Рекомбинация). Чем ближе друг к другу расположены гены, тем меньше вероятность их рекомбинации. На частоту рекомбинации влияют также пол особей, их физиология, состояние, а также внешние условия (темп-pa и др.). Частота рекомбинации может служить мерилом расстояния между генами. На этой основе разработаны методы определения положения генов в хромосоме и для ряда растений и животных составлены т. н. генетические карты хромосом. Для дрозофилы и кукурузы составлены также цитологич. карты хромосом, на к-рых гены локализованы в определённых, видимых под микроскопом участках хромосом. Генетич. и цитологич. карты дополняют и подтверждают друг друга.

Доказано, что один ген может влиять не на один, а на мн. признаки организма (плейотропия), вместе с тем развитие каждого признака зависит не от одного, а от многих генов (полимерия). Доказано также, что функции гена и его влияние на фенотип зависят от физич. положения гена в генетич. системе (эффект положения), от совокупности остальных генов (генотипической среды) и от внешних условий. Фенотипическос выражение гена - экспрессивность, так же как и его проявление - пенетрантностъ, т. е. наличие или отсутствие контролируемого данным геном признака, могут варьировать в зависимости как от внешних условий, так и от генотипа. Под влиянием различных внешних воздействий гены могут изменяться -мутировать. К независимому мутированию способны также элементарные единицы, входящие в состав гена. Все эти факты свидетельствуют о сложности материальной структуры гена, эволюционировавшей в процессе развития жизни на Земле.

После того как были вскрыты молекулярные основы организации наследственных структур и процессов, к-рые лежат в основе передачи наследств, информации в клетке (и в организме) и в поколениях клеток (и организмов), выяснилось, что гены контролируют процессы синтеза белков в клетках и что генные мутации (изменения хим. структуры генов) ведут к изменению хим. структуры белков (что в ряде случаев сводится к замене одной аминокислоты другой). Материальным носителем генетич. информации служит гигантский полимер -дезоксирибонуклеиновая кислота (ДНК), входящая в качестве важнейшего компонента в структуру хромосом всех организмов, за исключением нек-рых вирусов, содержащих рибонуклеиновую кислоту (РНК).

При удвоении молекул ДНК в процессе клеточного деления дочерние молекулы при участии специфич. ферментов строятся, как на шаблоне, на материнских молекулах и точно комплементарно воспроизводят их. Записанныйв молекулярных структурах (последовательности нуклеотидов) ДНК генетический код определяет порядок расположения аминокислот в белковой молекуле. Передача информации с ДНК на синтезируемые белки осуществляется при помощи РНК. Молекулы РНК строятся на основе ДНК п комплементарны ей; вследствие этого кодирующая структура ДНК воспроизводится в молекулах РНК (см. Комплементарностъ). В клетке имеется неск. типов РНК: информационная (и-РНК), транспортная (т-РНК), рибосом-ная (р-РНК). Они различаются по величине молекул, структуре и функции. Порядок расположения аминокислот в белковых молекулах контролируется высокополимерной и-РНК; биосинтез белка происходит в цитоплазматич. рибонуклео-протеидных (белок + р-РНК) структурах - рибосомах - при помощи ферментов - аминоацил-р-РНК-синтетаз и энергии аденозинтрифосфата (АТФ), запасаемой в митохондриях. Транспортировка аминокислот к рибосомам осуществляется с помощью сравнительно низкополимерной т-РНК. Структура и-РНК определяет место и порядок расположения аминокислот в молекулах белка-первичную структуру белковых молекул и их осн. свойства. Ген, т. е. участок молекулы ДНК, контролирующий синтез полипептидных цепей того или иного белка, наз. структурным геном. У ряда микроорганизмов (кишечная палочка, сальмонелла), а также у фагов хорошо изучены структура и функции мн. структурных генов (цистронов); установлено, что структурные гены, контролирующие синтез ферментов определённой последовательности реакций, сцеплены в блоки (опероны). Имеются структуры (т. н. операторы), включающие синтез и-РНК структурными генами. Операторы, в свою очередь, находятся под контролем генов-регуляторов. Т. о., гены составляют сложную систему, обеспечивающую строгое согласование процессов биосинтеза в клетке и в организме в целом. В клетках в функционально активном состоянии находится лишь часть генов; активность остальных подавлена, репрессирована. В связи с закономерной сменой состояний активности генов и их репрессии меняется и спектр синтезируемых в клетке белков. Так, у человеческого плода синтезируется гемоглобин эмбрионального типа; лишь к 1 году у ребёнка гемоглобин эмбрионального типа постепенно замещается нормальным гемоглобином взрослого человека. Динамику активного и репрессированного состояний генетич. аппарата удалось наблюдать и непосредственно - с помощью ми-кроскопич. и цитохимич. методов - на гигантских хромосомах в клетках слюнных желез личинок нек-рых двукрылых (дрозофила, хирономус). Для каждой стадии развития организма характерна строго определённая картина синтетической активности хромосом: нек-рые участки их находятся в состоянии сильной активности и синтезируют РНК, тогда как др. участки на этих стадиях развития функционально не активны, но становятся активными на др. стадиях. Оказалось, что в ряде случаев регуляторами функциональной активности генетич. аппарата являются гормоны. Проблема генетич. аспектов онтогенеза - одна из наиболее актуальных в современной биологии.

Генетич. аппарат функционирует в тесном взаимодействии с внехромосомными, или внеядерными, компонентами клетки. Мн. факты свидетельствуют о важной роли цитоплазмы в осуществлении развития организма, а в ряде случаев - и в наследовании (см. Наследственность цитоплазматическая). Напр., обусловленная гибелью пыльцы мужская стерильность у кукурузы п др. растений - результат взаимодействия определённых цитоплазматич. н ядерных факторов. Давно известны факты пластпдной наследственности. Свойства цитоплазмы играют большую роль при межвидовых скрещиваниях, в значит, мере определяя жизнеспособность и плодовитость гибридов. В свою очередь, свойства цитоплазмы находятся под контролем ядерного аппарата, изменение к-рого в ходе скрещиваний ведёт к изменению свойств цитоплазмы.

Закономерности мутационного процесса. Наследственное разнообразие особен создаётся, с одной стороны, за счёт рек