загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

rke, В., 1926; May W., Ernst Haeckel. Versuch einer Chronik seines Lebens und Wirkens, Lpz., 1909; Was wir Ernst Haeckel verdanken, Bd 1 - 2, Lpz., 1914 (библ.).

Л. Я. Бляхер.

ГЕККЕЛЬФОН, баритоновый гобой, деревянный духовой инструмент, созданный в 1904 нем. инструментальным мастером В. Геккелем (W. Heckel). Звучит октавой ниже гобоя. Звук певучий, выразительный, носового тембра. Изредка применяется в оркестре (напр., в Саломее и Электре Р. Штрауса). Г. малый (Г.-пикколо) звучит на кварту выше гобоя, обладает более светлым тембром.

ГЕККЕР Анатолий Ильич [25.8(6.9). 1888 -1.7.1938], советский военачальник, комкор (1935). Чл. Коммунистической партии с сент. 1917. Род. в Тбилиси в семье воен. врача. Окончил Владимирское воен. училище (1909) и курсы при Академии Генштаба (1917). Участник 1-й мировой войны, штаб-ротмистр. С сент. 1917 пред, солдатского к-та 33-го корпуса. В нояб.1917 избран нач. штаба 33-го корпуса. С дек. 1917 нач. штаба 8-й армии и чл. армейского революц. к-та, с янв. 1918 командующий 8-й армией. В марте - апр.1918 командующий войсками Донецкого бассейна, с апр. 1918 нач. штаба Верх. главнокомандующего вооруж. силами Союза юж. республик. В мае - июле 1918 комиссар Беломорского воен. округа. В июле 1918 участвовал в подавлении Ярославского контрреволюц. мятежа, затем командовал Вологодским тыловым р-ном и войсками Котласского р-на и Сев. Двины. С дек. 1918 командующий Астраханским укрепрайоном. В февр.- апр. 1919 нач. 13-й стрелк. дивизии. С мая 1919 по май 1921 командующий 13-й и 11-й армиями. В 1922 зам. нач. и нач. Воен. академии РККА, затем воен. атташе в Китае, в 1929-33 воен. атташе в Турции. С 1934 нач. отдела в Генштабе РККА. Награждён орденами Красного Знамени РСФСР, Арм. ССР и Азерб. ССР.

ГЕККЕР, Xеккер (Hecker) Фридрих Франц Карл (28.9.1811, Эйхтерсхейм,- 24.3.1881, Сент-Луис, США), немецкий мелкобуржуазный демократ. По профессии адвокат. В 1842-47 один из руководителей крайней левой в Баденском ландтаге и Оффенбургского собрания (1847), на к-ром была выработана программа мелкобуржуазных демократов. Во время Революции 1848-49 выступал за провозглашение Германии демократич. республикой. Был одним из руководителей республиканского восстания в Бадене в апр. 1848. После поражения восстания эмигрировал в Швейцарию, затем осенью 1848- в США. Участвовал в чине полковника в Гражданской войне в США 1861 - 1865 на стороне Северных штатов.

Соч.: Die Erhebung des Volkes in Baden fur die deutsche Republik im Fruhjahr 1848, Basel, 1848.

Лит.: Маркс К. иЭнгельсФ., Соч., 2изд., т. 5, с. 477-78; т.6, с. 48,54; т. 7.С.128; т. 14, с. 413; Революции 1848-1849, т. 1-2, М., 1952 (см. Именной указатель).

3. Шмидт. ГДР.

ГЕККЕРТ, Xеккерт (Heckert) Фриц (28.3.1884, Хемниц,-7.4.1936, Москва), деятель немецкого и междунар. рабочего движения. Рабочий-каменщик. В 1902 вступил в С.-д. партию. В годы 1-й мировой войны 1914-18 левый с.-д. Один из основателей Союза Спартака. За революц. деятельность был исключён в 1917 социал-шовинистами из С.-д. партии; кайзеровскими властями брошен в тюрьму. В дни Ноябрьской революции 1918 возглавлял Совет рабочих и солдатских депутатов г. Хемница. Чл. КПГ со дня её основания, чл. ЦК КПГ с 1919. Деп. рейхстага в 1920 и в 1924-33. Входил в саксонское рабочее правительство в 1923. Г. играл видную роль в герм, профсоюзном движении. Вместе с Э. Тельманом провёл большую работу по превращению КПГ в боевую марксистско-ленинскую партию. Участник 3-го и последующих конгрессов Коминтерна. В 1921 встречался с В. И. Лениным. В 1928-35 канд. в чл. Президиума ИККИ. Г. был чл. Исполбюро Профинтерна (с 1920). После ареста фашистами Э. Тельмана (март 1933) продолжал активную борьбу против фашизма. Умер в Москве. Похоронен на Красной площади у Кремлёвской стены. В ГДР учреждена медаль Фрица Геккерта.

Лит.: Pieck W., Fritz Heckert, вкн.: Die Internationale, 1936, Н. 3; Erkampft das Menschenrecht. Lebensbilder und letzte Briefe antifaschistischer Widerstandskampfer, В., 1958; К u с k1i с h E., ...einer der stand-haftesten, rastlosesten und feurigsten Kamp-fer furvdie Sache der Arbeiterklasse. F. Heckert, vBeitrage zur Geschichte der deutschen Arbeiterbewegupg, 1968, H. 5, S. 847 - 57.

П. В. Поляков.

ГЕККОНЫ, цепкопалые (Gekkonidae), семейство пресмыкающихся отряда ящериц. Глаза большие, как правило, с вертикальными зрачками. Подвижные веки обычно отсутствуют. Лишь немногие Г. превышают в длину 30 см. Ноги всегда хорошо развиты. У большинства Г. пальцы расширены и покрыты снизу роговыми пластинками. Микроскопич. волоски, покрывающие пластинки, а также острые когти позволяют Г. не только удерживаться на вертикальных поверхностях, но даже бегать по ним. Хвост, за редким исключением, очень ломкий, но быстро восстанавливается (регенерирует). Окраска большинства Г. серых или коричневых тонов, но среди тропич. древесных Г. встречаются и яркоокрашенные.

Гекконы:

1 - сцинковый; 2 - лопастно-хвостый.

Г.- сумеречные и ночные животные. Большинство держится на деревьях, скалах, обрывах и т. п. вертикальных поверхностях; Г., обитающие в пустынях, обычно роют норки, в к-рых скрываются на день. Питаются насекомыми, паукообразными, многоножками и т. п. Мн. Г. издают негромкие звуки. Почти все Г.- яйцекладущие. Яйца Г. покрыты твёрдой известковой оболочкой. В кладке 1-2 яйца. В течение сезона яйца откладывают несколько раз. Ок. 70 родов, объединяющих ок. 480 видов. Распространены в тропич., субтропич. и отчасти умеренной зонах. В СССР, преим. в Ср. Азии и Казахстане, 8 видов Г. Сцинковый r.(Teratoscincus scincus) и гребнепалый Г. (Crossobamon eversmanni)-характерные обитатели песчаных пустынь Ср. Азии. Один вид из рода голопалых Г.- серый голопалый Г. (Gymnodactylus russowi) - встречается также в Крыму и Закавказье. Остатки Г. обнаружены начиная с эоцена.

Лит.: ТерентьевП. В., Герпетология, М., 1961; Underwood G., On the classification and evolution of geckos, Proceedings of the Zoological Society of London, 1954, v. 124, pt 3, p. 469-92.

ГЕКЛА, Xeкла (исл. Hekla, букв.- чепчик, капюшон; вероятно, из-за тумана, окутывающего вершины), действующий вулкан в юж. части Исландии, в 110 км к В. от г. Рейкьявик. Выс. 1491м. Г. представляет собой стратовулкан, образовавшийся в результате многократных извержений из линейной трещины. От вершины во все стороны спускаются потоки базальтовой лавы, излившейся во время последнего крупного извержения 1947-48. Общий объём продуктов извержения 1947-48 оценивается в 0,4 км3. Вершина Г. во время этого извержения поднялась с 1447 до 1502 м, но затем несколько понизилась вследствие разрушения краёв кратера. Первое датированное извержение было в 1104; всего у собственно Г. и на площади этого вулкана было св. 20 извержений. Извержение 1766 было особенно разрушительным и сопровождалось человеческими жертвами.

ГЕКСАМЕТИЛЕНДИАМИН, органич. соединение NH2(CH2)6NH2; бесцветные кристаллы; tпл 42 °С, tкип 204-205 "С; хорошо растворим в воде, спирте, эфире и др. органич. растворителях; перегоняется с водяным паром. Пары Г. при длит, действии на организм человека вызывают расстройство центр, и вегетативной нервной системы и др. расстройства. Г.- важнейший полупродукт в произ-ве полиамидного волокна (найлона). Мировое произ-во Г. достигает неск. сотен тысяч тонн в год. Распространённый промышленный метод получения Г.- восстановление динитрила адипиновой кислоты на катализаторах: медь - кобальт (125 °С, 60-62,5 Мн/м2, 600-625 кгс/см2), кобальт на силикагеле или др.:

ГЕКСАМЕТИЛЕНТЕТРАМИН, гексамин, уротропин, бесцветные кристаллы сладковатого вкуса, обугливающиеся при 280 °С; выше 230 °С возгоняются в вакууме. Г. хорошо растворим в воде, сероуглероде, умеренно - в спирте, хлороформе; плохо - в эфире, бензоле.

Получают Г. конденсацией аммиака с формальдегидом: 4NH3 + 6CH2O <-> (CH2)6N4 + 6H2O. Эта реакция обратима, и в соответствующих условиях её равновесие может быть смещено влево, что позволяет использовать Г.

как удобный источник формальдегида (напр., в произ-ве феноло-формальдегид-ных смол). Г. применяют также для получения мощного взрывчатого вещества гек-согена, в аналитич. химии (напр., для приготовления буферных растворов), как бездымное твёрдое горючее (т. н. твёрдый спирт) и т. д. Г.- лекарственный препарат из группы антисептических средств. Противомикробное действие Г. обусловлено образованием формальдегида при расщеплении Г. в кислой среде. Г. применяют внутрь в порошках, таблетках и растворах, а также внутривенно при инфекционных заболеваниях, особенно при воспалительных заболеваниях мочевых путей. Г. впервые синтезирован А. М. Бутлеровым (i860).

ГЕКСАН, н-гексан, насыщенный углеводород C6H14; бесцветная жидкость; tкип 69 °С, плотность 0,660 г/см3 (20 °С), показатель преломления n20D 1,37506. Ввиду низкого октанового числа (25) Г.- нежелательная составная часть синтетич. бензина. Г. содержится в значит, количествах в бензине прямой перегонки и крекинг-дистиллятах нефти. В условиях ароматизации нефтепродуктов я ка-талитич. риформинга Г. дегидроцикли-зуется в бензол. Изомеры Г.-2,2-диметил-бутан (неогексан) и 2,3-диметилбутан (диизопропил)- добавки к моторному топливу, улучшающие его качество.

ГЕКСАХЛОРАН, гексахлорцикло-гексан, хим. препарат, смесь 8 изомеров 1, 2, 3, 4, 5, 6-гексахлорцик-логексана. Г.- один из важных инсектицидов. Препарат, содержащий 99-100% гамма-изомера, наз. "линдан".

ГЕКСАХЛОРБЕНЗОЛ, хим. соединение, применяемое для борьбы с головнёвыми грибами злаков; входит в состав протравителей семян.

ГЕКСАХЛОРБУТАДИЕН, хим. соединение, применяемое для борьбы с филлоксерой виноградной лозы; см. Фунгициды.

ГЕКСАХЛОРЭТАН, хлорзамещённый этан ССl3 - ССl3; бесцветные кристаллы со слабым запахом камфоры; tпл 189 °С (в запаянном капилляре). Г. сублимируется в открытых сосудах; нерастворим в воде, умеренно растворим в спирте и эфире, хорошо - в сероуглероде; устойчив к действию к-т и щелочей на холоду. Г, получают хлорированием тетрахлорэтилена ССl2 = ССl2 при 100- 200 °С под давлением; образуется также как побочный продукт в произ-ве ССl4 из CS2 и Сl2 Г. применяют как заменитель камфоры в произ-ве нитроцеллюлозных пластмасс, в смеси с некоторыми металлами как дымообразователь, как ин-тенсификатор свечения пиротехнич. составов, а также в медицине как противоглистное средство при лечении гельмнн-тозов печени - описторхоза и фасциолёза.

ГЕКСАХОРД (от греч. hex - шесть и chorde - струна, букв.- шестиструн-ник), диатонический шестиступенный звукоряд. Применялся в раннем средневековье (с 11 в.). Состоял из последовательности: тон, тон, полутон, тон, той. По этому принципу на различных ступенях употребительного тогда общего звукоряда (от соль большой октавы до ми второй) строилось семь Г.

ГЕКСАЭДР (греч. hexaedron, от hex - шесть и hedra - основание, грань), шестигранник, чаще всего правильный шестигранник, т. е. куб.

ГЕКСАЭДРИТ, железный метеорит, микроструктура к-poro обнаруживает строение по шестиграннику (гексаэдру). Г. состоят из сплава железа, бедного никелем (камасита).

ГЕКСИТЫ, шестиатомные алифатические спирты НОСН2(СНОН)4СН2ОН; бесцветные кристаллические вещества со сладким вкусом, хорошо растворимые в воде и спирте, нерастворимые в эфире. Г. содержат четыре асимметрич. атома углерода и существуют в виде 10 стереоизомеров, к-рые могут быть получены восстановлением гексоз. Г. легко этери-фицируются; окисление Г. приводит к гексозам и сахарным к-там. Нек-рые Г. (D-маннит, D-сорбит, дульцит и D-идит) встречаются в природе.

D-Mаннит (I), tпл 166 °С; tкип 276- 280 °С /133,322 н/м2 (т. е. 1 мм рт. ст.), удельное вращение [а]25D = -0,244° (вода); содержится в застывшем соке закавказского ясеня (т. н. манне), а также в морских водорослях, грибах, маслинах и др. растениях. В пром-сти D-маннит получают из морских коричневых водорослей или каталитич. гидрированием сахарозы. D-Маннит - исходный материал для получения поверхностно-активных веществ, олиф, смол, лаков и т. д., применяется также в пищевой и фарма-цевтич. пром-сти, в парфюмерии.

D-Сорбит (II), tпл 110-111 °С

(безводного), = - 1,73° (вода); содержится в значит, количествах в водорослях, рябине п др. растениях. D-Сорбит получают каталитич. или электролитич. восстановлением D-глюкозы.

D-Сорбит-важнейший промежуточный продукт в произ-ве аскорбиновой к-ты; его применяют также как заменитель сахара для больных сахарным диабетом.

Дульцит, (щ. 188,5 °С; содержится в морских водорослях, дрожжах. Синтетически дульцит может быть получен восстановлением D-галактозы амальгамой натрия. Дульцит входит в состав сред, применяемых для бактериологич. исследований.

D-Идит, tпл 73 °С; содержится в ягодах рябины наряду с сорбитом.

ГЕКСЛИ (Huxley) Олдос (1894-1963), английский писатель; см. Хаксли О.

ГЕКСЛИ, Хаксли (Huxley) Томас Генри (4.5.1825, Илинг, близ Лондона,- 29.6.1895, Истборн, Суссекс), английский естествоиспытатель, ближайший соратник Ч. Дарвина и популяризатор его учения. В 1846-50 участник экспедиции к вост. берегам Австралии и Новой Гвинеи. В 1854-95 проф. Королевской горной школы. В 1871 - 80 секретарь, в 1883 - 85 президент Лондонского королев, общества. Исследования Г. относятся к области зоологии, сравнит, анатомии, палеонтологии, антропологии и эволюционной теории. Г. доказал родственную связь между медузами и полипами (1849); развил и обосновал положение о единстве строения черепа позвоночных животных. На основании сравнит.-анатомич. изучения строения таза и конечностей пресмыкающихся и птиц установил общность их происхождения и доказал, что птицы произошли от пресмыкающихся. В работах по геологии подверг критике старое представление о геологич. одновременности происхождения земной коры и выдвинул идею гомотаксиса, т. е. отложений одинаковых фаций, характеризующихся сходной или одинаковой флорой или фауной, но различного возраста. Г, выдвигал неверное представление об отсутствии прогресса в большинстве групп органич. мира, утверждая, что на протяжении доступного для исследований геологич. времени в подавляющем большинстве групп животных и растений заметного повышения организации не произошло. После выхода в свет книги Дарвина "Происхождение видов" (1859) Г. стал настойчиво и убедительно доказывать животное происхождение человека. В результате изучения и сопоставления многочисленных сравнит.-анатомич. данных о строении тела человека и обезьяны Г. пришёл к выводу, что анатомич. различия, отделяющие человека от высших обезьян - гориллы и шимпанзе, гораздо меньше тех различий, к-рые отделяют гориллу от низших обезьян. Г. горячо отстаивал дарвинизм от нападок со стороны клерикалов и стремился сделать научные знания достоянием самых широких слоев населения.

Соч.: Life and letters..., v. 1-2, L., 1900; в рус. пер.- О положении человека в ряду органических существ, СПБ, 1864; Основы физиологии, М., 1899 (совм. с И. Розента-лем); Практические занятия по зоологии и ботанике, М., 1902 (совм. с Г. Мартином); О причинах явлений в органическом мире, 2 изд., М.- Л., 1927.

Лит.': Давиташвили Л. ГЛ., В. О. Ковалевский и Т. Гексли как естествоиспытатели-эволюционисты, в кн.: Тр. Института истории естествознания, т. 3, М , 1949; Вiblу С., Т. Н. Huxley, L., 1959 (имеется библ.).

ГЕКСОГЕН, циклотриметилен-тринитроамин, мощное вторичное (бризантное) взрывчатое вещество. Г.- бесцветный, нерастворимый в воде кристаллический порошок, плотность 1,82 г/см3, tпл 204- 205° С (с разложением), при дальнейшем нагревании воспламеняется (в больших количествах или в замкнутом объёме - со взрывом); при горении развивает темп-ру более 3000 °С. При сильном ударе или под действием капсюля-детонатора Г. детонирует, скорость детонации приблизительно равна 8,4 км/сек, теплота взрыва 5,4 Мдж/кг (1300 ккал/кг). Г. обычно получают из гексаметилентетрамина (уротропина) и азотной к-ты, применяют для снаряжения боеприпасов, изготовления детонаторов и как компонент промышленных взрывчатых веществ (аммонитов, предохранительных взрывчатых веществ и др.). Г. опасен в обращении, поэтому для снаряжения боеприпасов его применяют в смеси с др., менее чувствительными взрывчатыми веществами, чаще всего с тротилом, или с добавкой флегматизаторов (парафин, церезин, воск). Во время 2-й мировой войны объём производства Г. измерялся сотнями тысяч т в год.

Лит.: Орлова Е. Ю., Химия и технология бризантных взрывчатых веществ, М., I960. Б. Н. Кондриков.

ГЕКСОД [от греч. hex - шесть и (электр)од], электронная лампа с 6 электродами: катодом, анодом и 4 сетками (2 управляющие и 2 экранирующие). В основном Г. применялся для смешения электрич. колебаний высокой частоты в супергетеродинном радиоприёмнике до появления в 50-х гг. 20 в. более совершенной электронной лампы - гептода.

ГЕКСОЗАМИНЫ, C6H13O5N, производные простых Сахаров, у к-рых один из гидроксилов замещён аминогруппой (NHj). В природе широко распространены глю-козамин и галактозамин - структурные компоненты различных мукополисаха-ридов животного, растит, и бактериального происхождения. Г. относятся к аминосахарам.

ГЕКСОЗАНЫ (С6Н10О5)n,иолиса.гариды, молекулы к-рых построены из большого числа гексозных остатков (см. Гексозы), соединённых ее- или 3-гликозидными связями. К Г. относятся крахмал, гликоген, целлюлоза, декстраны, галактаны, маннаны, фруктозаны, лишайниковый крахмал - лихенин, глкжоманнаны, арабогалактаны и др.

ГЕКСОЗОФОСФАТЫ, сложные эфи-ры, образованные гексозами и одним или двумя остатками фосфорной к-ты (гексо-зомонофосфаты и гексозодифосфаты). Г.- важнейшие промежуточные продукты углеводного обмена животных, растений и микроорганизмов. Г. образуются при фосфорилировании гексоз (гл. обр. глюкозы и фруктозы), преим. за счёт энергии аденозинтрифосфорной кислоты. Г.- промежуточные продукты гли-колиза или гликогенолиза, они образуются также при прямом окислении глюкозы. Биол. смысл фосфорилирования гексоз, по-видимому,- превращение ия в ациклическую форму, легко вовлекаемую в обмен веществ.

ГЕКСОЗЫ, С6Н12О6 , простые сахара - моносахариды, содержащие 6 атомов углерода; широко распространены в природе - содержатся в растит, и животных тканях как в свободном виде, так и в составе полисахаридов. Г., содержащие в молекуле альдегидную группу, относятся к альдозам (глюкоза, манноза, галактоза), кетонную - к кетозам (фруктоза). Наиболее важны глюкоза и фруктоза. Г. служат сырьём для мн. видов микробиологич. пром-сти (произ-во молочной к-ты, ацетона, глицерина и др.).

ГЕКСОКИНАЗЫ, ферменты из группы киназ, к-рые обеспечивают образование фосфорилированных мокосалгаридов путём переноса остатка фосфорной к-ты с аденозинтрифосфорной кислоты на углевод с образованием фосфорных эфиров при шестом (напр., у глюкозы) или первом (напр., у фруктозы и галактозы) атоме углерода. Г. участвуют в первых этапах превращения глюкозы при брожении и гликолизе и при окислении по пентоз-ному пути. Г. обладают выраженной однозначной специфичностью в зависимости от источника выделения. Кофактором Г. служит Mg2+. Активность Г. регулируется гормонами (инсулином, сте-роидными гормонами), резко тормозится продуктом реакции - гексозофосфатом. Мол. масса Г. дрожжей 96 000.

ГЕКСИНИЙ, лекарственный препарат из группы ганглиоблокирующих средств. Применяют внутрь, подкожно и внутримышечно при лечении сосудистых спазмов, гипертонич. и язвенной болезней и в хирургич. практике для снижения артериального давления с целью уменьшения кровотечения в процессе операции.

ГЕКТАР, единица площади в метрической системе мер, применяемая для измерений земельных участков. Сокращённое обозначение: русское га, междунар. ha. 1 га равен площади квадрата со стороной 100 м. Наименование гектар образовано добавлением приставки гекто... к наименованию единицы площади ар. 1 га = 100 ар = 10 000 м2, 1 десятина = = 1,09254 га.

ГЕКТО... (от греч. hekaton - сто), приставка для образования наименований кратных единиц, по величине равных 100 исходным единицам. Была принята при установлении метрической десятичной системы мер. Сокращённое обозначение: русское г, междунар. h. Приставка пишется слитно с наименованием исходной единицы. Пример образования кратной единицы с приставкой гекто: 1 гвт (гектоватт) = 100 вт (ватт).

ГЕКТОГРАФ (от гекто... и греч. grapho - пишу), упрощённый печатный прибор для размножения текста и иллюстраций. Г. представляет собой плоский ящик, заполненный ровным слоем студнеобразной массы (смесь желатины, глицерина и воды). Текст и иллюстрации наносят на бумагу спец. чернилами, в состав к-рых входят анилиновый краситель, глицерин и спирт. Полученный оригинал прижимают к поверхности массы в Г., в результате чего изображение с бумаги передаётся на желатиновый слой. При последующем прижимании чистой бумаги к поверхности массы на ней получаются отпечатки. Г. позволяет получить до 100 оттисков. Изобретён в России М. И. Алисовым в 1869. Г. вытесняются более производительными приборами - ротаторами, ротапринтами и др.

ГЕКТОКОТИЛЬ, ектокотилизированное щупальце (от гекто... и греч. kotyle - присоска в щупальце), своеобразно изменённое щупальце самцов головоногих моллюсков, при помощи к-рого самец переносит содержащие сперму сперматофоры из своей мантийной полости в мантийную полость самки. У осьминога кораблика (Argonauta) и у представителей близких к нему родов длинный Г. отрывается от тела самца и самостоятельно плавает в воде, проникая затем в мантийную полость самки (в прошлом был ошибочно принят за червя-паразита).

ГЕКТОПЬЕЗА, кратная единица давления и механического напряжения в МТС системе единиц. Сокращённое обозначение: русское гпз, междунар. hpz. 1 гпз = 100 пьез, или давлению, производимому силой 100 стен на 1 м2. 1 гпз = 1 бар, 1 н/м2 = 10-5гпз.

ГЕКТОР, в Илиаде троянский герой, предводитель в Троянской войне, старший сын царя Трои Приама и Гекубы; погиб в единоборстве с Ахиллом, мстившим Г. за убийство друга - Патрокла.

ГЕКТОРОВИЧ (Hektorovic) Петар (1487, о. Хвар,-13.3.1572, Стариград), хорватский поэт. Из аристократич. семьи. Участвовал в нар. восстании на о. Хвар (1510-14). Во время нашествия турок бежал в Италию (1539). Г.- поэт-гуманист, представитель дубровницкой литературы эпохи Возрождения. На хорв., итал., лат. языках писал сонеты, послания, религ. драмы. Автор поэмы-идиллии Рыбная ловля и рыбацкие присказки (опубл. 1568).

Соч.: Pjesme Petra Hektorovica i Hanibala Lucica, Zagreb, 1874 (Stari pisci hrvatski, knj. 6); в рус. пер., в сб.: Поэты Далмации эпохи Возрождения XV - XVI вв., М., 1959.

Лит.: Голенищев-КутузовИ. Н., Итальянское Возрождение и славянские литературы XV - XVI веков, М., 1963; Кombоl М., Povijest hrvatske knjizevnosti do narodnog preporoda, 2 izd., Zagreb, 1961.

ГЕКУБА, Гекаба, в Илиаде жена троянского царя Приама, мать Гектора, Париса, Кассандры и др. После падения Трои Г. была отдана в пленницы Одиссею, но погибла при переправе через Геллеспонт (Дарданеллы). Образ Г. вошёл в классич. лит-ру (Еврипид, Данте, Шекспир) и стал нарицательным для выражения беспредельного горя и отчаяния.

ГЕЛА, древний город в Сицилии, совр. Джела.

ГЕЛАДА, джеладa (Theropithecus gelada), обезьяна сем. мартышкообразных отряда приматов. У самцов дл. тела 70- 74 см, хвоста 46-50 см, весят ок. 20 кг; самки мельче-дл. тела 50-65 см, весят ок. 13 кг. Похожи на павианов. У самца бурая мантия, у самки шерсть серая; на груди участок голой красной кожи в форме песочных часов. Встречаются в горах Эфиопии, где обитают на высоте от 2000 м. Живут стадами до 400 особей в скалистой местности. Питаются луковицами, травами, насекомыми. На деревья почти не лазают.

М. Ф. Нестурх.

ГЕЛАТСКАЯ АКАДЕМИЯ, Академия в Гелати, научно-культурный центр феод. Грузии. Г. а. и Гелатский монастырь были основаны в 12 в. груз, царём Давидом Строителем (1089-1125) недалеко от г. Кутаиси. Здесь проходила деятельность выдающихся мыслителей Грузии Иоанэ Петрици (11-12 вв.), Иоанэ Шавтели (12 в.), Арсена (13 в.). Для периода основания и расцвета Г. а. характерен интерес к античной философии. Деятели Г. а. занимались переводами, их комментированием и создавали оригин. произведения. В Г. а. преподавались геометрия, арифметика, астрономия, философия, грамматика, риторика и музыка.

ГЕЛАТСКИЙ МОНАСТЫРЬ, Гелати, один из наиболее крупных ср.-век. монастырей Грузии (в 11 км ог Кутаиси), выдающийся памятник груз, архитектуры. Основан царём Давидом Строителем в нач. 12 в. Основу богатств Г. м. составили земельные пожалования и вклады груз, царей и частных лиц. Монастырь имел много льгот. Он зависел только от царя, а в религ. вопросах от католикоса-патриарха, местопребыванием к-рого Г. м. был со 2-й пол. 16 в. до 1814. В ср. века Г. м. был крупным центром просвещения, передовой филос. мысли и художеств, культуры Грузии. В 12 в. в Г. м. была создана Гелатская академия. В наст, время Г. м.- филиал Кутаисского историко-этнографического музея.

Гелатский монастырь. 1. Портрет Давида Нарина. Фрагмент росписи главного храма. 13 в. 2. Голова архангела Гавриила. Фрагмент мозаики в конхе алтаря главного храма. 1125 - ИЗО

.Гелатский монастырь. Общий вид с юга. В центре - главный храм (1106-1125).

Архит. комплекс монастыря состоит из крестово-купольного гл. храма (1106-25), крестово-купольной церкви св. Георгия, 2-этажной церкви св. Николая, трёхъярусной колокольни (все -13 в.) и здания академии (12 в., вост. портик 14 в.). Сохранились части юж. входа, сооружённого над могилой Давида Строителя (12 в.), и кам. ограды. Мозаика гл. храма с изображением богоматери с младенцем и архангелов (1125-30) - выдающийся памятник ср.-век. иск-ва. В храмах Г. м. уцелели росписи 12-18 вв., включающие портреты историч. лиц. Иконы из Г. м. хранятся в Музее иск-в Груз. ССР в Тбилиси, рукописи, церк. утварь, древнее шитьё - гл. обр. в Кутаисском историко-этнографич. музее и в Ин-те рукописей АН Груз. ССР в Тбилиси.

Лит.: Л о м и н а д з е Б. Р., Гелати (Путеводитель), Кутаиси, 1958; Меписашвили Р., Гелати, Тб., 1965; его же, Архитектурный ансамбль Гелати, Тб., 1966.

ГЕЛВИНК, Сарера, залив Тихого ок. у сев.-зап. берега о. Новая Гвинея. Вдаётся в сушу на 305 км. Шир. у входа ок. 450 км. Глуб. до 1627 м. На Ю. коралловые рифы. У входа расположена группа о-вов Япен, Биак, Супиори и др. Вост. берег низменный, зап. гористый. Приливы неправильные полусуточные, их величина ок. 2,5 м. На берегах многочисл. посёлки.

ГЕЛГАУДИШКИС, посёлок гор. типа в Шакяйском р-не Литов. ССР, на левом берегу р. Нямунас (Неман), в 54 км к С. от ж.-д. ст. Вилкавишкис (на линии Каунас - Калининград). В Г. имеется завод керамики.

ГЕЛДЕР (Gelder) Арт (Арент) де (26.10.1645, Дордрехт,-до 25.8.1727, там же), голландский живописец. Ок. 1660 начал учиться в Дордрехте у С. ван Хох-стратена и позднее - в Амстердаме у Рембрандта, став его последним и наиболее верным учеником. Работам Г. 1670-х гг. свойственны демократизм и эмоциональная яркость образов; насыщенная буро-оливковая гамма обогащена фиолетовыми и оранжевыми акцентами (ч Се человек, 1671, Картинная гал., Дрезден; У входа в храм, 1679, Маурицхёйс, Гаага; Странствующий музыкант, Эрмитаж, Ленинград). Картины 1680-90-х гг. (Лот с дочерьми, Музей изобразит, иск-в им. А. С. Пушкина, Москва) несут печать экзотич. нарядности и чувственности, изощрённости фактурно-колористич. эффектов. В позднем цикле картин Страсти господни (ок. 1715-в музеях Ашаффенбурга, Амстердама и Мюнхена) проявляются черты фантастики и субъективизма.

Лит.: Lilienfeld К.. Arent de Gelder, sein Leben und seine Werke, Haag, 1914.

ГЕЛДЕРЛАНД (Gelderland), провинция в Нидерландах, между зал. Эйселмер, р. Рейн и границей с ФРГ. Пл. 5 тыс. км2. Нас. 1,5 млн. чел. (1970). Адм. ц.- г. Арнем. Большая часть Г. представляет собой холмистые равнины - гесты - со ср. вые. 20-30 м (плато Велюве до 110 м). На 3. гесты покрыты дюнами, на В. преобладают торфяные болота. Вдоль Мааса и Рейна полоса плодородных маршей (территория, лежащая ниже уровня моря и огороженная дамбами от затопления).

Многочисленные осушительные и трансп. каналы. На Ю., между р. Маас ,.. и рукавами Рейна,- с. х-во, специализированное на произ-ве овощных, зерновых, садовых и технич. культур. В остальной части пров. с. х-во смешанного земледельческо-скотоводч. направления. Металлообр., пищ., бум., текст., кож., хим., деревооор. пром-сть. Доля Г. в нац. продукте страны 9,8% (1967). Пром. центры - Арнем и Нейметен.

Г. И. Ященко.

ГЕЛДЕРН (нем. Geldern, голл. Gelre),cp.-век. графство (с 11 в.), затем герцогство (с 1339) в Сев.-Зап. Европе. В 1472-77 Г. принадлежал бургундским герцогам, в 1543 включён в состав нидерландских владений Габсбургов. В период Нидерл. бурж. революции 16 в. Сев., или Нижний, Г. вошёл в Республику соединённых провинций (ныне эта часть Г.- провинция Нидерландов Гелдерланд)', Южный, или Верхний, Г. остался в составе Южных (Испанских) Нидерландов; в 1713 (окончательно в 1814-15) большая его часть отошла к Пруссии (ныне - округ в земле ФРГ Сев. Рейн-Вестфалия; адм. ц.- г. Гельдерн, Geldern), меньшая - к Нидерландам (вошла в пров. Лимбург).

ГЕЛЕНДЖИК, город в Краснодарском крае РСФСР. Расположен на берегу Геленджикской бухты Чёрного м., в 38 км к Ю.-В. от Новороссийска, с к-рым связан автомоб. и мор. сообщением. 29 тыс. жит. (1970). Пищ. пром-сть. В окрестностях сады и виноградники. Краеведч. музей. Возник в 1864 как населённый пункт, город - с 1915.

Г.-центр курортного района, включающего климатич. приморские курорты и леч. местности Дивноморское, Джан-хот, Кабардинку и Архипо-Осиповку. Климат средиземноморского типа. Лето очень тёплое (ср. темп-pa авг. 24оС), зима мягкая (ср. темп-pa февр. -4оС); осадков ок. 750 мм за год. Лечебные средства: аэротерапия, солнцелечение, морские купания (с мая по октябрь), грязелечение (грязь привозная из Солёного озера близ Тамани); виноградолечение (с сент. по окт.). Лечение больных с заболеваниями органов дыхания, кровообращения, нервной системы. Санатории, дома отдыха, пансионаты.

Лит.: Геленджик и его окрестности, Краснодар, 1964; Колесникова А. А., КазицинВ. В..Щеглов Д. Е., Геленджик. Справочник - путеводитель, 2 изд., [Краснодар], 1969.

ГЕЛЕНИУМ (Helenium), род одно- или многолетних травянистых растений сем. сложноцветных. Ок. 40 видов в Сев. и Центр. Америке, гл. обр. на западе США. Мн. виды декоративны. В садоводстве широко используется Г. осенний (Н. autumnale) - многолетник с крупными цветочными корзинками в щитковидных соцветиях. Садовые формы и сорта гибридного происхождения объединяют под назв. Г. гибридный (Н. hybridum); они различны по высоте и различаются окраской цветочных корзинок - комбинациями жёлтых, коричневых и красно-пурпуровых оттенков. Цветут во второй половине лета и осенью.

ГЕЛЕПОЛЬ (греч. helepolis, от helein - брать и polis - город), высокая (до 40 м) передвижная многоэтажная деревянная башня. Применялась в древности и позднем средневековье при осаде крепостей. Г. представляла собой сложное инж. сооружение, состоявшее из бревенчатого каркаса с междуэтажными перекрытиями и стен из плетней или дощатых щитов.

Использование гелеполей при осаде крепости.

В стенах каждого этажа устраивались отверстия для стрельбы - бойницы. В верхних этажах находились перекидные (опускные) мостики, по к-рым осаждающие переходили с Г. на крепостную стену. Г. передвигалась на катках по бревенчатому настилу с помощью рычагов, талей, зубчатых колёс и пр. силами рабочих, к-рые размещались в нижнем этаже. Здесь же находились запас материалов и резервуар с водой для тушения пожаров.

Г. Ф. Самойлович.

ГЕЛЕРТЕРСТВО (от нем. Gelehrter - учёный), книжная, оторванная от жизни и практич. деятельности учёность; начётничество.

ГЕЛЕФФ (Geleff) Поуль (6.1.1842, Бредебро,- 16.5.1928, о. Капри), датский политич. деятель, один из первых пропагандистов идей науч. социализма в Дании. В 1871-77 сотрудничал (с перерывами) в газ. "Сосиалистен" [(Socialisten), с мая 1874стала наз.Сосиаль-демократен (Social Demokraten)]. В окт. 1871 был одним из инициаторов создания в Копенгагене дат. секции 1-го Интернационала и её многих филиалов в провинции. В 1872- 1875 находился в тюрьме за революц. деятельность. В марте 1877 эмигрировал в США. В 1920 вернулся в Данию.

А. С. Каплин.

ГЕЛИ (от лат. gelo - застываю), дисперсные системы с жидкой или газообразной дисперсионной средой, обладающие нек-рыми свойствами твёрдых тел: способностью сохранять форму, прочностью, упругостью, пластичностью. Эти свойства Г. обусловлены существованием у них структурной сетки (каркаса), образованной частицами дисперсной фазы, к-рые связаны между собой молекулярными силами различной природы (подробнее см. Дисперсная структура).

Типичные Г. в виде студенистых осадков (коагелей) образуются из золей при их коагуляции или в процессах выделения новой фазы из пересыщенных растворов как низко-, так и высокомолекулярных веществ. Г. с водной дисперсионной средой наз. гидрогелями, с жидкой углеводородной средой -органогелями. Отверждение золей во всём объёме без выделения осадка и нарушения их однородности даёт т.н. лиогели. Вся дисперсионная среда в таких Г. лишена подвижности (иммобилизована) вследствие механич. захватывания в ячейках структурной сетки. Чем больше асимметрия частиц, тем при более низком содержании дисперсной фазы образуется гель. В случае гидрозоля пятиокиси ванадия, напр., для отверждения системы достаточно 0,05%, в др. случаях - нескольких объёмных процентов дисперсной фазы. Лиогели обладают малой прочностью, пластичностью, нек-рой эластичностью и тиксотропиеи, т. е. способностью обратимо восстанавливать структуру, разрушенную механич. воздействием. Таковы, напр., Г. мыл и мылоподобных поверхностно-активных веществ, Г. гидроокисей мн. поливалентных металлов. Высушиванием лиогелей можно получить аэрогели, или ксерогели,- микропористые системы, лишённые пластичности, имеющие хрупкую, необратимо разрушаемую структуру. Так получают распространённые сорбенты: алюмогель из Г. гидроокиси алюминия и силикагель из студней кремнёвой к-ты. Г. часто отождествляют со студнями. Однако последние, в отличие от Г., являются однофазными (гомогенными) системами - истинными растворами полимеров (органических или неорганических) в низкомолекулярных жидкостях. В химии и технологии синтетич. смол Г. по традиции наз. неплавкие и нерастворимые твёрдые (хрупкие) или твёрдо-образные (упруго-вязкопластичные) продукты поликонденсации или полимеризации. Пространственную структуру в таких системах образует непрерывная сетка химически связанных макромолекул.

ГЕЛИ ПРИРОДНЫЕ МИНЕРАЛЬНЫЕ, аморфные минералы, образовавшиеся в водной среде и содержащие воду в переменных количествах. Их часто наз. коллоидными минералами. Свежеобразованные Г. п. м. очень богаты водой и напоминают студенистые или хлопьевидные массы. С течением времени они теряют воду и затвердевают. В природных условиях в форме гелей встречаются кремнезём, водные окиси железа и марганца, односернистое железо и др. Из твёрдых минеральных гелей наиболее распространён опал (SiO2*nH2O), встречающийся гл. обр. в жилах и минеральных отложениях горячих и тёплых источников. К числу типичных твёрдых гелей, образующихся при выветривании, относятся аллофан (mАl2О3*nSiO2*рН2О) и дельвоксит (водный фосфат окисного железа), а также лимониты, вады.

Из продуктов кристаллизации природных гелей образуются так называемые метаколлоиды - халцедон (SiO2), хризо-колла (CuSiO3*nH2O), гидрогётит (FeOOH*nH2O), нек-рые разновидности гидраргиллита и др. Многие агрегаты твёрдых Г. п. м. характеризуются округлостью внешних контуров (т. н. колломорфные структуры). Г. п. м. наиболее устойчивы в поверхностных участках земной коры.

Лит.: Чухров Ф.В., Коллоиды в земной коре, М.- Л., 1936; Седлецкий И. Д., Коллоидно-дисперсная минералогия, М.- Л., 1945.

ГЕЛИАКИЧЕСКИЙ ВОСХОД ЗВЕЗДЫ, гелический восход звезд ы (от греч. heliakos - солнечный), день или, точнее, момент первого в году появления звезды над горизонтом на вост. стороне неба на фоне утренней зари. (До гелиакич. восхода звезда в течение неск. месяцев находится на дневном небе и невидима.) Момент Г. в. з. зависит от координат звезды и географических координат места наблюдения. Моменты Г. в. з. (Сириуса) позволяли астрономам Др. Египта предсказывать сроки весенних разливов Нила, имевших значение для распорядка сельскохозяйственных работ.

ГЕЛИБОЛУ (тур. Gelibolu), Галлиполи (Gallipoli), древний Каллиполис (Kallipolis), город и порт на европ. берегу Дарданелльского пролива.

Важная крепость и крупный торг, центр Византии. В марте 1354 был захвачен турками-османами и стал опорной базой их дальнейших завоеваний на Балканах. В сер. 19 в. здесь были построены новые воен. укрепления, усиленные в 70-х гг. Во время 1-й мировой войны на п-ове Г. (Галлипольский п-ов) происходили активные воен. действия (см. Дарда-нелльская операция 1915).

ГЕЛИДИУМ (Gelidium), род красных водорослей; включает ок. 40 видов, обитающих в тёплых морях. Слоевище жёсткое, хрящеватое, часто перисто-разветвлённое, высотой 1-25 см. Спорофит и гаметофит сходны по строению. Спорофит даёт тетраспоры. Гаметофит в результате полового процесса образует карпоспоры. Г. используют для получения агар-агара, особенно в Японии. В СССР встречается в Японском и Чёрном морях в незначит. количествах.

ГЕЛИЙ (лат. Helium), символ Не, хим. элемент VIII группы периодич. системы, относится к инертным газам; п. н. 2, ат. масса 4,0026; газ без цвета и запаха. Природный Г. состоит из 2 стабильных изотопов: 3Не и 4Не (содержание 4Не резко преобладает).

Впервые Г. был открыт не на Земле, где его мало, а в атмосфере Солнца. В 1868 француз Ж. Жансен и англичанин Дж. Н. Локьер исследовали спектроскопически состав солнечных протуберанцев. Полученные ими снимки содержали яркую жёлтую линию (т. н. D3-линию), к-рую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил её происхождение присутствием на Солнце нового элемента, к-рый и назвали гелием (от греч. helios - Солнце). На Земле Г. впервые был выделен в 1895 англичанином У. Рамзаем из радиоактивного минерала клевеита. В спектре газа, выделенного при нагревании клевеита, оказалась та же линия.

Гелий в природе. На Земле Г. мало: 1 м3 воздуха содержит всего 5,24см3 Г., а каждый килограмм земного материала - 0,003 мг Г. По распространённости же во Вселенной Г. занимает 2-е место после водорода: на долю Г. приходится ок. 23% космич. массы.

На Земле Г. (точнее, изотоп 4Не) постоянно образуется при распаде урана, тория и других радиоактивных элементов (всего в земной коре содержится ок. 29 радиоактивных изотопов, продуцирующих 4Не).

Примерно половина всего Г. сосредоточена в земной коре, гл. обр. в её гранитной оболочке, аккумулировавшей осн. запасы радиоактивных элементов. Содержание Г. в земной коре невелико - 3*10-7% по массе. Г. накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают пром. масштабов. Макс, концентрации Г. (10-13% ) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше Г. в составе природных газов. Вулканич. газам свойственно обычно низкое содержание Г.

Добыча Г. в пром. масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5 % по объёму); рядо-вые (0,10-0,50) и бедные (<0,10). В СССР природный Г. содержится во многих нефтегазовых месторождениях. Значительные его концентрации известны в нек-рых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

В природном Г. любого происхождения (атмосферном, из природных газов, из радиоактивных минералов, метеоритном и т. д.) преобладает изотоп 4Не. Содержание 3Не обычно мало (в зависимости от источника Г. оно колеблется от 1,3*10-4 до 2*10-8%) и только в Г., выделенном из метеоритов, достигает 17-31,5%. Скорость образования 4Не при радиоактивном распаде невелика: в 1 т гранита, содержащего, напр., 3 г урана и 15 г тория, образуется 1 мг Г. за 7,9 млн. лет; однако, поскольку этот процесс протекает постоянно, за время существования Земли он должен был бы обеспечить содержание Г. в атмосфере, литосфере и гидросфере, значительно превышающее наличное (оно составляет ок. 5*1014 м3 ). Такой дефицит Г. объясняется постоянным улетучиванием его из атмосферы. Лёгкие атомы Г., попадая в верхние слои атмосферы, постепенно приобретают там скорость выше 2-й космической и тем самым получают возможность преодолеть силы земного притяжения. Одновременное образование и улетучивание Г. приводят к тому, что концентрация его в атмосфере практически постоянна.

Изотоп 3Не, в частности, образуется в атмосфере при бета-распаде тяжёлого изотопа водорода - трития (Т), возникающего, в свою очередь, при взаимодействии нейтронов космич. излучения с азотом воздуха:

Ядра атома 4Не (состоящие из 2 протонов и 2 нейтронов), наз. альфа-частицами или гелионами,-самые устойчивые среди составных ядер. Энергия связи нуклонов (протонов и нейтронов) в 4Не имеет максимальное по сравнению с ядрами других элементов значение (28,2937 Мэв); поэтому образование ядер 4Не из ядер водорода (протонов) 1Н сопровождается выделением огромного количества энергии. Считают, что эта ядерная реакция:

[одновременно с 4Не образуются 2 позитрона и 2 нейтрино (v)] служит основным источником энергии Солнца и других схожих с ним звёзд. Благодаря этому процессу и накапливаются весьма значит, запасы Г. во Вселенной.

Физич. и химич. свойства. При нормальных условиях Г.- одноатомный газ без цвета и запаха. Плотность 0,17846 г/л, tкип -268,93°С. Г.- единственный элемент, к-рый в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Наименьшее давление перехода жидкого Г. в твёрдый 2,5 Мн/м2 (25 ат), ?„л при этом равна -272,1°С. Теплопроводность (при 0°С) 143,8*10-3вт/см-К [343,4 • 10-6 кал/(см•град•сек)]. Радиус атома Г., определённый различными методами, составляет от 0,85 до 1,33 А. В 1 л воды при 20°С растворяется ок. 8,8 мл Г. Энергия первичной ионизации Г. больше, чем у лю бого другого элемента,- 39,38*10-13дж (24,58 эв); сродством к электрону Г. не обладает. Жидкий Г., состоящий только из 4Не, проявляет ряд уникальных свойств (см. ниже).

До наст, времени попытки получить устойчивые хим. соединения Г. оканчивались неудачами (см. Инертные газы). Спектроскопически доказано существование в разряде иона Не2+. В 1967 советские исследователи В. П. Бочин, Н. В. За-курин, В. К. Капышев сообщили о синтезе в зоне дугового разряда за счёт реакции Г. с фтором, с ВFa или с RuF5 ионов HeF+, HeF22+ и HeF2+. Согласно расчёту, величина энергии диссоциации иона HeF+ равна 2,2 эв.

Получение и применение. В пром-сти Г. получают из гелийсодержа-щих природных газов (в наст, время эксплуатируются гл. обр. месторождения, содержащие > 0,1% Г.). От других газов Г. отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

Благодаря инертности Г. широко применяют для создания защитной атмосферы при плавке, резке и сварке активных металлов. Г. менее электропроводен, чем другой инертный газ - аргон, и поэтому электрич. дуга в атмосфере Г. даёт более высокие темп-ры, что значительно повышает скорость дуговой сварки. Благодаря небольшой плотности в сочетании с негорючестью Г. применяют для наполнения стратостатов. Высокая теплопроводность Г., его хим. инертность и крайне малая способность вступать в ядерную реакцию с нейтронами позволяют использовать Г. для охлаждения атомных реакторов. Жидкий Г.- самая холодная жидкость на Земле, служит хладагентом при проведении различных научных исследований. На определении содержания Г. в радиоактивных минералах основан один из методов определения их абсолютного возраста (см. Геохронология). Благодаря тому что Г. очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам (замена азота на Г. предотвращает появление кессонной болезни). Изучаются возможности применения Г. и в атмосфере кабины космич. корабля.

С. С. Бердоносов, В. П. Якуцени.

Гелий жидкий. Относительно слабое взаимодействие атомов Г. приводит к тому, что он остаётся газообразным до более низких темп-р, чем любой другой газ. Максимальная темп-pa, ниже к-рой он может быть сжижен (его критич. темп-pa Тк), равна 5,20 К. Жидкий Г.- единственная незамерзающая жидкость: при норм, давлении (рис. 1) Г. остаётся жидким при сколь угодно низких темп-рах

и затвердевает лишь при давлениях, превышающих 2,5 Мн/м2 (25 ат).

Рис. 1. Диаграмма состояния 4Не.

При темп-ре и норм, давлении жидкий Г. испытывает фазовый переход второго рода. Г. выше этой темп-ры наз. Не I, ниже - Не II. При темп-ре фазового перехода наблюдаются аномальное возрастание теплоемкости (т. н.-точка, рис. 2), излом кривой темп-рной зависимости плотности Г. (рис. 3) и др. характерные Явления. В 1938 П. Л. Капица открыл у Не II сверхтекучесть - способность течь практически без вязкости. Объяснение этого явления было дано Л. Д. Ландау (1941) на основе квантовомеханич. представлений о характере теплового движения в жидком Г.

Рис. 2. Теплоёмкость жидкого 4Не вблизи лямбда-точки Кривая имеет характерную форму, напоминающую греч. букву лямбда.

Рис. 3. Плотность Р жидкого 4Не вблизи -точки.

При низких темп-pax это движение описывается как существование в жидком Г. элементарных возбуждений - фононов (квантов звука), обладающих энергией ( - частота звука, h - постоянная Планка) и импульсом р = = (с = 240 м/сек - скорость звука). Число и энергия фононов растут с повышением темп-ры Т. При Т>0,6 К появляются возбуждения с большими энергиями (ротоны), ддя к-рых зависимость е(р) имеет нелинейный характер. Фононы и ротоны (см. Квазичастицы) обладают импульсом и, следовательно, массой. Отнесенная к 1 см3, эта масса определяет плотность т. н. нормальной компоненты жидкого Г. При низких темп-pax, стремится к нулю при . Движение нормальной компоненты, как и обычного газа,имеет вязкостный характер. Остальная часть жидкого Г., т. н. сверхтекучая компонента, движется без трения; её плотность При так что в-точке обращается в нуль и сверхтекучесть исчезает (Не I - обычная вязкая жидкость).

Т. о., в жидком Г. одновременно могут происходить два движения с различными скоростями. н а основе этих представлений удаётся объяснить ряд наблюдаемых эффектов: при вытекании Не II из сосуда через узкий капилляр темпра в сосуде повышается, т. к. вытекает гл. обр. сверхтекучая компонента, не несущая с собой теплоты (т. н. механокалорический эффект); при создании разности темп-р между концами закрытого капилляра с Не II в нём возникает движение (термомеханический эффект) - сверхтекучая компонента движется от холодного конца к горячему и там превращается в нормальную, к-рая движется навстречу, при этом суммарный поток отсутствует. В жидком Г. может распространяться звук двух видов - обычный и т. н. второй звук. При распространении второго звука в местах сгущения нормальной компоненты происходит разрежение сверхтекучей.

Все сказанное относится к обычному Г., состоящему в основном из изотопа 4Не. Более редкий изотоп 3Не имеет иные, чем у 4Не, квантовые свойства (см. Квантовая жидкость). Жидкий 3Не - также незамерзающая жидкость (Тк = = 3,33 К), но не обладающая сверхтекучестью: вязкость 3Не неограниченно возрастает с понижением темп - ры.

Л. П Питаевский.

Лит: Кеезом В , Гелий, пер. с англ., М., 1949, Фастовский В. Г., Ровинский А. Е, Петровский Ю. В., Инертные газы, М, 1964; Халатников И. М., Введение в теорию сверхтекучести, М , 1965; Смирнов Ю. Н., Гелий вблизи абсолютного нуля, "Природа", 1967, № 10, с 70, Якуцени В. П., Геология гелия, Л., 1968. См. также лит. к ст. Инертные газы.

ГЕЛИКОИД (от греч. helix, род. падеж helikos - спираль и eidos - вид), один из видов винтовой поверхности.

ГЕЛИКОН (от греч. helix, род. падеж helikos - кольцо, спираль), духовой инструмент семейства бюгелъгорнов, модификация басовой и контрабасовой тубы. Сконструирован в России в 40-х гг. 19 в. Употребляется гл. обр. в духовых оркестрах. Чтобы инструмент было удобно носить на плече, ствол изогнут в виде кольца.

ГЕЛИКОНИДЫ (Heliconinae), подсемейство дневных бабочек сем. нимфалид (Nymphalidae). Ок. 200 видов; распространены в тропич. Америке. Г.- сравнительно крупные (крылья в размахе иногда более 6 см) узкокрылые бабочки, имеющие яркую окраску (красочный рисунок на общем чёрном фоне); тело гусениц покрыто ветвистыми шипами. Скверный запах и острый вкус выделяемых Г. веществ делают их несъедобными и тем самым защищают от птиц и др. врагов. Яркая окраска Г.- один из классич. примеров т. н. предупреждающей окраски. Морфологич. сходство принадлежащих к другим сем. бабочек (не выделяющих едких веществ) с Г. дало основание говорить об их приспособительном подражании (см. Мимикрия).

ГЕЛИКОПРИОН (от греч. helix, род. падеж helikos - спираль и рrion - пила) (Helicoprion), род ископаемых животных класса акулообразных рыб. Описаны рус. учёным А. П. Карпинским. Были распространены в морях ранней перми на территории Приуралья, Японии, Австралии, Шпицбергена и США. Средний (симфизный) ряд зубов нижней челюсти сливался в спираль из 2-3 оборотов (отсюда назв.), выдвигался изо рта вперёд и загибался снаружи в особую хрящевую полость. Спирали противопоставлялись мелкие дробящие зубы верхней челюсти. Лит.: Обручев Д. В., Изучение едестид и работы А. П. Карпинского, Тр. Палеонтологического ин-та, 1953, т. 45.

Спиральный орган геликоприона

ГЕЛИКОПТЕР (от греч. helix, род. падеж helikos - спираль, винт и pterоп - крыло), то же, что вертолёт.

ГЕЛИО... (от греч. helios - Солнце), составная часть сложных слоев, указывающая на их отношение к Солнцу, солнечной энергии (напр., гелиограф, гелиотехника).

ГЕЛИОБИОЛОГИЯ (от гелио... и биология), раздел биофизики, изучающий влияние изменений активности Солнца на земные организмы. Основоположник Г.- сов. физик А. Л. Чижевский (его первая работа в этой области вышла в 1915), однако на связь между колебаниями активности Солнца и мн. проявлениями жизнедеятельности у обитателей Земли указывали до него швед, учёный С. Аррениус и др. Колебания солнечной активности, сопровождающиеся периодическим увеличением количества пятен и хромосферными вспышками (цикл в среднем 11 лет), ведут к изменению интенсивности рентгеновского, ультрафиолетового и радиоизлучения Солнца, а также испускаемых им потоков корпускулярных частиц. Циклические колебания солнечного излучения отражаются на жизнедеятельности земных организмов. Так, установлено, влияние изменений солнечной активности на рост годичных слоев деревьев и урожайность зерновых, размножение и миграцию насекомых, рыб и др. животных, на возникновение и обострение ряда заболеваний у человека и животных. Крупные исследования по Г. выполнены сов. учёными. А. Л. Чижевский установил связь возникновения эпидемий и эпизоотии, обострений нервных и психич. заболеваний и ряда др. биол. явлений с изменениями солнечной, активности. Врач С. Т. Вельховер показал изменения окрашиваемости и болезнетворности нек-рых микроорганизмов при солнечных вспышках. Энтомолог Н. С. Щербиновский наблюдал, что периодичность налётов саранчи соответствует ритму Солнца (т. е. повторяется каждые 11 лет). Гематолог Н. А. Шульц установил влияние перепадов активности Солнца на число лейкоцитов в крови человека и относительный лимфоцитоз. Итал. физико-химик Дж. Пиккарди обнаружил влияние различных физич. факторов, и в частности изменений активности Солнца, на состояние коллоидных растворов. Япон. гематолог М. Таката разработал пробу на осаждение белков крови, чувствительную к изменениям активности Солнца. Врач М. Фор (Франция) и др. показали, что учащение внезапных смертей и обострений хронич. Заболеваний связано с повышением солнечной активности; Фор организовал первую в мире медицинскую службу Солнца. Исследования по Г. включают: 1) изучение корреляции изменений определённого биол. показателя (по статистич. данным) с колебаниями активности Солнца; 2) испытания на различных биол. объектах действия условий, моделирующих отд. факторы солнечной активности. Развитие второго направления только начинается - первая лаборатория по Г. организована в СССР в 1968 (Иркутск). Г. тесно связана с др. отраслями биологии, с медициной, космич. биологией, астрономией и физикой. Осн. задачи, стоящие перед Г.,- выяснить, какие факторы активности Солнца влияют на живые организмы и каковы характер и механизмы этих влияний. Прогнозы резких колебаний солнечной активности (в частности, хро-мосферных вспышек) должны будут учитываться не только в космич. биологии и медицине, но и в практике здравоохранения, в с. х-ве и др. отраслях науки и народного хозяйства. См. также Гелиогеофизика.

Лит.: Чижевский А. Л., Эпидемические катастрофы и периодическая деятельность солнца, М., 1930; Щербинов-ский Н. С., Циклическая активность Солнца и обусловленные ею ритмы массовых размножений организмов, в кн.: Земля во Вселенной, М., 1964; Солнечная активность и жизнь, Рига, 1967; Чижевский А. Л., Шишина Ю. Г., В ритме солнца, М., 1969.

А. Т. Платонова.

ГЕЛИОГЕОФИЗИКА (от гелио... и геофизика), научная дисциплина, изучающая влияние процессов, происходящих на Солнце, на геофизич. явления. Излучение спокойного Солнца (при отсутствии на нём активных процессов) состоит из постоянного во времени электромагнитного излучения во всех диапазонах спектра (рентгеновском, ультрафиолетовом, видимом, инфракрасном и радиодиапазоне) и слабого потока корпускул (в основном электронов и протонов) - т. н. солнечного ветра. Из перечисленных компонентов поверхности Земли достигают только видимое и радиоизлучение. Первое несёт основное количество энергии, поступающей в тропосферу и гидросферу и определяющей их тепловой и динамич. режим. Ультрафиолетовое и рентгеновское излучения ионизуют верхние слои атмосферы (создают ионосферу) и т. о. делают возможной коротковолновую радиосвязь на большие расстояния. Корпускулярная радиация пополняет частицами радиационные пояса Земли и хвост магнитосферы, Земли, вытянутый в сторону, противоположную от Солнца.

При появлении активных процессов на Солнце происходит усиление излучения в рентгеновском, ультрафиолетовом и радиодиапазоне спектра и выбрасываются (в узком телесном угле) корпускулярные потоки со скоростями неск. сотен км/сек и выше. Усиление коротковолновой радиации вызывает увеличение плотности ионосферных слоев, что приводит на освещённой стороне Земли к ослаблению или прекращению радиосвязи на коротких волнах и к улучшению радиосвязи на длинных. Корпускулы, насыщая радиационные пояса, ускоряются в них и проникают в земную атмосферу до глубин ионосферных слоев в приполярных областях. При этом возникает аномальная ионизация, приводящая к сильным нарушениям радиосвязи, полярным сияниям и усилению свечения ночного неба (в результате возбуждения корпускулами атомов воздуха), возникают магнитные бури как результат движений потоков заряженных частиц. В свою очередь, следствием колебаний магнитного поля являются земные токи и индукционные токи в проводниках различных устройств, создающие помехи в их работе. Возможно, корпускулярные потоки могут изменять также и характер циркуляции в земной атмосфере и тем самым, не меняя общего количества получаемой Землёй теплоты, приводить к её перераспределению по Земле, т. е. к изменениям погоды. Исследуется влияние электромагнитных полей, связанных с солнечными корпускулами, на различные эффекты в биосфере Земли.

Лит.: Митра С. К., Верхняя атмосфера, пер. с англ., М., 1955; Солнечные корпускулярные потоки и их взаимодействие с магнитным полем Земли. Сб. ст., пер. с англ., М., 1962; Поглощение радиоволн в полярной шапке. [Сб. ст.], пер. с англ., М , 1965; Тверской Б. А., Динамика радиационных поясов Земли, М., 1968; Д о р м а н Л. И. и Мирошниченко Л. И., Солнечные космические лучи, М., 1968.

М. Н.Гневышев.

ГЕЛИОГРАВЮРА (от гелио... и гравюра), один из способов глубокой печати, при к-ром печатная форма изготовляется с применением фотографич. и химич. процессов. Появилась во 2-й пол. 19 в. Диапозитив изображения копируют на бумагу со светочувствительным желатиновым слоем (пигментная бумага). Копию переносят на медную пластину, покрытую асфальтовыми зёрнами, образующими растр. В результате проявления копии на пластине получается желатиновый рельеф различной толщины в соответствии с насыщенностью тонов изображения. При обработке раствором хлорного железа на пластине образуются углублённые печатающие элементы. Способ Г. отличается высоким качеством воспроизведения, но малопроизводителен; вытеснен ракельной глубокой печатью.

ГЕЛИОГРАФ (от гелио... и греч. grapho- пишу), 1)в метеорологии прибор для автоматической регистрации продолжительности солнечного сияния, т. е. времени, когда Солнце находится над горизонюм и не закрыто облаками. Существует много конструкций Г. В СССР наиболее распространён Г. Кэмпбелла - Стокса, в к-ром неподвижный шар служит линзой, собирающей лучи Солнца на картонной ленте, разделённой часовыми линиями. Лента прожигается солнечными лучами, если облучённость превышает 0,3-0,4 кал!см2-мин. Вследствие видимого суточного движения Солнца прожог имеет вид линии, длина к-рой служит мерой продолжительности сияния. Г. может служить также актинограф с непрерывной регистрацией (см. Актинометр).

Лит.: Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968, с. 209.

2) В астрономии телескоп, приспособленный для фотографирования Солнца; применяется для получения фотографий всего или части солнечного диска в широком диапазоне длин волн. Г. может применяться в комбинации с целостатом. Вследствие огромной освещённости, создаваемой Солнцем, светосила объектива Г. может быть минимальной. Для получения изображений Солнца больших линейных размеров фокусное расстояние Г. выбирают возможно большим; чтобы при этом не увеличивать размеров инструмента, применяют дополнительные увеличительные системы. Г. снабжён быстродействующим затвором (обычно шторного типа), дающим время экспозиции от 0,02 до 0,001 сек. Один из первых Г. был установлен рус. астрофизиком М.М. Гусевым в Вильно (Вильнюс) в 1854.

3) В военном деле в 19 - нач. 20 вв. светосигнальный прибор для подачи сигналов (с помощью азбуки Морзе) зеркалом, отражающим световые лучи. Дальность действия Г. днём - 18-40 км, ночью - 3-8 км.

ГЕЛИОГРАФИЧЕСКИЕ КООРДИНАТЫ, гелиографические широта и долгота, величины, с помощью к-рых определяют положения точек на поверхности Солнца. Гелиографич. широта В - угловое расстояние данной точки от солнечного экватора, отсчитываемое по солнечному меридиану. Гелиографич. долгота L - угол между плоскостью меридиана данной точки и плоскостью начального меридиана, в качестве к-рого принимают т. н. меридиан Керрингтона, прошедший через восходящий узел солнечного экватора в средний Гринвичский полдень 1 янв. 1854. В астрономических ежегодниках на каждый день приводятся сведения (Г. к. видимого центра Солнца, ориентация оси его вращения), необходимые для определения Г. к. любой точки поверхности Солнца.

ГЕЛИОДОР (Heliodoros; гг. рожд. и смерти неизв.), греческий писатель 3 в. Автор романа Эфиопская повесть (Эфиопика), повествующего о любви и приключениях эфиопской царевны Хариклии и фессалийского юноши Феагена. В Европе роман Г. известен с 1534 (1-е изд.); он послужил образцом для галантно-авантюрных романов 17-18 вв.

Соч.: Les Ethiopiques (Theagene et Chariclee), t. 1 - 3, P., 1935-43; врус. пер.- Эфиопика, вступ. ст. и коммент. А. Егунова, М., 1965.

Лит.: История греческой литературы, под ред. С. И. Соболевского [идр.], т. 3, М., 1960, с. 268 - 71; Oeftering M., Heliodor und seine Bedeutung fur die Literatur, В., 1901.

Л. А. Фрейберг.

ГЕЛИОКОНЦЕНТРАТОР (от гелио.... и лат. con - с, вместе, в, centrum - центр, средоточие), одно или неск. зеркал или линз, собирающих (фокусирующих) солнечные лучи для повышения плотности солнечной радиации.

Устройства для концентрации солнечных лучей известны давно (напр., зажигательные устройства древнегреч. математика и механика Архимеда, франц. учёных Т. П. Бюффона, А. Л. Лавуазье). В своём труде Об оптике М. В. Ломоносов описывает разработанную им оригинальную оптич. систему, составленную из плоских зеркал и собирательных линз. В СССР первый крупный Г. в виде параболоида диаметром 10 м был создан в 1946 (г. Ташкент). Подобные же параболоидные Г. были сооружены во Франции, США и Японии. Во Франции, напр., в 1968 начала действовать наиболее крупная солнечная печь с параболоидными Г. диаметром 54 м. Самый крупный Г. составного типа с площадью зеркала 20 000 м2запроектирован в СССР для солнечной теплосиловой станции - СТС (см. Солнечная энергетическая установка).

Осн. элементы Г.- жёсткая несущая конструкция и зеркальная или линзовая часть. С 60-х гг. 20 в. развивается новое направление по изготовлению полужестких и надувных Г. из полимерных прозрачных и металлизированных плёнок. Форма отражательной поверхности и схема Г. могут быть самыми различными (рис.):

а-параболоидная (параболо-цилиндрич., цилиндрич.); б - коническая; в - тороидальная; г - составная из отд. плоских зеркал; д - зеркально-линзовая; е - в виде плоских зеркал, следящих за Солнцем, и неподвижного параболоидного концентратора (подвижные плоские зеркала обычно называют ориентаторами или гелиостатами, они служат для направления солнечных лучей на неподвижный Г.). По характеру поверхности Г. делятся на фацетные с прерывистой и гладкие с непрерывной поверхностью зеркала. Составные Г. представляют собой систему подвижных или неподвижных, плоских или искривлённых зеркал и линз. Максимальная плотность энергии, достигнутая на высокоточных параболоидных Г., 35-103квт/м2- немного менее половины плотности лучистой энергии на поверхности Солнца (74-103 квт/м2).

Лит.: Вейнберг В. Б., Оптика в установках для использования солнечной энергии, М., 1959; Б а у м В. А., А п а р и с и Р. Р., Тепляков Д. И., Об объективной оценке точности оптических систем солнечных установок, в сб.: Использование солнечной энергии, М., 1960 (Теплоэнергетика, в. 2); Гелиотехника, 1965-69; The proceedings of the solar furnace symposium, Journal of Solar energy Science and Engineering, 1957, v. 1, № 2 - 3.

P. P.