загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

новение корончатых Г., используемых в качестве модели для изучения опухолевого роста у животных и человека, связано с изменениями ДНК в поражённых клетках организма. Строение Г. зависит от вида возбудителя, характера его локализации на поражённых органах, числа особей возбудителей в развивающихся Г., степени подвижности возбудителей и от морфологич. строения поражаемых тканей. Возбудители мн. Г. приносят значит, ущерб сельскому и лесному х-ву. К их числу относятся возбудители рака картофеля, килы капусты, пузырчатой головни кукурузы, бородавчатости герани, рака пихты, виноградная филлоксера и мн. др. Возбудители нек-рых Г. используются в биол. борьбе с сорными растениями. В Г. на дубе, сумахе и фисташке содержатся значит, кол-ва дубильных веществ, э. И. Слепян.

Галлы:1- на стебле китайской гречихи, вызванные головнёвым грибом Ustilago treubii; 2- на виргинском можжевельнике (кедровые яблоки), вызванные ржавчинным грибом Gymnosporangium juniperi virginianae; 3- раковые галлы на яблоне, вызванные кровяной тлёй Myzoxylus laniger; 4- мешковидные галлы на листе липы, вызванные клещом Eriophyes tilae; 4a - тот же галл в разрезе; 5 - сложные галлы на ели, вызванные тлёй Chaphalodes strobilinus; 6- галлы на дубе, вызванные яблоковидной орехотворкой Diplolepis longiventris (нижний) и Diplolepis quercus folii (два верхних); 6а - тот же галл в разрезе.

ГАЛЛЫ (лат. Galli), кельтские племена, заселившие в 6-5 вв. до н. э. территорию к С.-З. от Альп, бассейны Рейна, Сены, Луары и верховья Дуная, а также долину р. По, т. е. терр., получившую у римлян назв. Галлия. Подробнее см. в ст. Кельты.

ГАЛЛЬ (Gall) Франц Йозеф (9.3.1758, Тифенбрунн, Австрия,-22.8.1828, Мон-руж, близ Парижа), австрийский врач и анатом, создатель френологии. На основе анатомич. исследований и многочисл. наблюдений над разными группами людей Г. пришёл к выводу, что центры душевной жизни сосредоточены не в желудочках мозга, как тогда повсеместно считали, а в мозговых извилинах. Анатомич. работы Г. имели опытную основу, в то же время предложенная им классификация психич. способностей была совершенно произвольной. Столь же произвольны и соображения Г.о локализации этих способностей в различных участках больших полушарий мозга, хотя сама идея локализации психич. функций явилась важным этапом в теории психологии. Г. считал, что различия в мозговых извилинах должны отражаться на внешней форме черепа - его шишках, а по этим последним можно судить о психич. способностях человека. Эти соображения и легли в основу френологии, получившей в 19 в. огромную популярность. Физиол. исследования показали несостоятельность френологии.

Лит.: Ярошевский М. Г., История психологии, М., 1966, гл. 7; Фресс П., Пиаже Ж. [сост.], Экспериментальная психология. Сб. ст., пер. с франц., в. 1, М., 1966, гл. 1. М. Г. Ярошевский.

ГАЛЛЬСКИЙ ЯЗЫК, язык кельтских племён, незадолго до н. э. населявших территорию от Пиренейского п-ова до Малой Азии. Представлял собой комплекс различных, но довольно близких племенных диалектов. Г. я. выделяется в особую ветвь кельтских языков; более близок бриттской ветви, чем гойдельской. До нас дошли эпиграфич. памятники Г. я. (4 в. до н. э.- первые века н. э.). Большинство кратких надписей содержит лишь посвятительные формулы. Самая обширная - календарь на бронзовой доске из Колиньи. Много галльских слов и имён собственных сохранилось в лат. надписях и в произв. ал тич-ных авторов. По сравнению с остальными кельтскими Г. я. очень архаичен. Фонетич. облик слов не претерпел значит, изменений. Мутации согласных, видимо, не развились. Насколько можно судить, именное склонение было весьма развито; глагол известен гораздо хуже. Порядок слов в предложении свободный. В большинстве областей распространения Г. я. был вытеснен латинским к 5-6 вв. Много галльских слов сохранилось в совр. франц. яз. и сев.-итал. диалектах.

Лит.: Льюис Г., Педерсен X., Краткая сравнительная грамматика кельтских языков, пер. с англ., М., 1954; Dottin G., La langue gauloise, P., 1920; Whatmough J., The dialects of ancient Gaul, ser. 1 - 5, Ann Arbor, 1950-51.

А. А. Королёв.

ГАЛЛЮЦИНАЦИИ (от лат. hallucinatio- бред, видения), восприятия, возникающие без наличия реального объекта при психич., нек-рых инфекц. заболеваниях, интоксикациях, травмах головного мозга, тяжёлых душевных потрясениях и др. Г. для больных - источник восприятия, а не что-то воображаемое. Различают Г. слуховые (голоса, оклики по имени, шумы, различные звуки), зрительные (видения людей, мертвецов, зверей, насекомых, чудовищных миров, картин и событий), обонятельные (запахи гнили, керосина, духов и др.), осязательные (ощущение насекомых на коже, влаги, дуновений), т. н. о бщего чувства (в полости живота, груди находится и движется к.-л. предмет, животное) и т. н. экстракампинны е (больной видит вне поля своего зрения человека, преследователя и др.). Одни Г. имеют яркую чувственную окраску, образность, убедительность, проецируются во вне и могут быть неотличимы от реальных восприятий. Такие Г. называются истинными. Другие Г. воспринимаются внутр. слухом или зрением больного, локализуются во внутр. поле сознания, сопровождаются чувством сделанности, воздействия какой-то силой, вызывающей у него видения, громкие мысли и т. п. Это псевдогаллюцинации, описанные в конце 19 в. рус. психиатром В. X. Кандинским.

Под влиянием Г., носящих императивный, приказывающий характер, больной может совершить опасные для окружающих и собств. здоровья и жизни поступки. Г.- важный и характерный признак многих психич. заболеваний. Патофизиол. сущность Г. окончательно не выяснена. Лечение направлено на устранение осн. заболевания.

Лит.: Попов Е. А., Материалы к клинике и патогенезу галлюцинаций, Хар., 1941; Гиляровский В. А., Учение о галлюцинациях, М., 1949. Б. С. Бамдас.

ГАЛЛЮЦИНОГЕНЫ, психотомиметики, вещества растительного происхождения и синтетич. соединения, способные вызывать у здоровых людей нарушения функций центр, нервной системы, сходные с психозами, в частности галлюцинации. К Г. относят алкалоиды, выделяемые из мекс. кактуса (мескалин), нек-рых видов мекс. грибов (псилоцибин и др.), корня могильника (гармин); полусинтетич. производное алкалоида спорыньи - диэтилаламид лизергиновой кислоты (ЛСД-25); индийскую коноплю (гашиш); нек-рые синтетич. холинолитические средства и др. Г. вызывают психич. нарушения, выражающиеся слуховыми и зрительными галлюцинациями, чувством страха, нарушением правильности восприятия окружающего. Кроме того, наблюдаются нарушения вегетативных функций. Применяют Г. иногда с диагностич. целью, для выявления вяло или скрыто текущих психич. заболеваний, а также для создания в экспериментах на животных моделей психозов. Повторный приём Г.может вызвать привыкание и тяжёлое нарушение нервной деятельности.

Лит.: Закусов В. В., Фармакология, 2 изд., М., 1966; Столяров Г. В., Лекарственные психозы и психотомиметиче-ские средства, М., 1964 (библ.); Швец Ф., Фармакодинамика лекарств с экспериментальной и клинической точки зрения, 3 изд., пер. со словац., т. 1 - 2, Братислава, 1963.

Р. И. Квасной.

ГАЛМЕЙ (нем. Galmei, от позднелат. calamina), каламин, минерал состава Zn4[S2O7](OH)2*H2O. См. Каламин.

ГАЛМЕЙНЫЕ РАСТЕНИЯ (от нем. Galmei - кремнекислый цинк), растения, приуроченные к почвам,богатым цинком. В золе Г. р. содержится значит, кол-во цинка. К Г. р. относятся, напр., разновидность жёлтой фиалки (Viola lutea var. calaminaria), разновидность альпийской ярутки (Thlaspi alpestre var. calaminarium). См. также Биогеохимические эндемики.

ГАЛО (франц. halo, от греч. halos - световое кольцо вокруг Солнца или Луны), группа оптич. явлений в атмосфере; возникают вследствие преломления и отражения света ледяными кристаллами, образующими перистые облака и туманы. Явления Г. весьма разнообразны: они имеют вид радужных (в случае преломления) и белых (при отражении) полос, пятен, дуг и кругов на небесном своде (см. рис.). Наиболее обычные формы Г.: радужные круги вокруг диска Солнца или Луны с угловым радиусом либо 22o,либо 46o; паргелии, или ложные Солнца,- яркие радужные пятна справа и слева от Солнца (Луны) на расстояниях 22o реже 46o; околозенитная дуга - отрезок радужной дуги,касающейся верхней точки 46-градусного круга и обращённой выпуклостью к Солнцу; паргелич. круг - белый горизонтальный круг, проходящий через диск светила; столб - часть белого вертикального круга, проходящего через диск светила; в сочетании с паргелич. кругом образует белый крест. Г. следует отличать от венцов, к-рые внешне схожи р Г., но имеют другое, дифракционное, происхождение.

Для возникновения нек-рых Г. необходимо, чтобы ледяные кристаллы, имеющие форму 6-гранных призм, были ориентированы по отношению к вертикали одинаковым или хотя бы преимуществ, образом. Теория Г. детально разработана. Так, 22-градусный паргелий возникает в результате преломления лучей в вертикально ориентированных кристаллах при прохождении луча через грани, образующие углы в 60grad; 46-градусный круг создаётся преломлением при гранях, составляющих углы в 90grad; вертикальные и горизонтальные круги получаются вследствие отражения от горизонтальных и вертикальных граней кристаллов.

Лит.: Миннарт М., Свет и цвет в природе, [пер. с англ.], М., 1958.

ГАЛОБИОНТЫ (от греч. hals-соль и Ыоп- живущий), организмы, обитающие в пересоленных (ультрагалинных) озёрах (напр., в СССР-озёра Эльтон, Баскунчак). Г. никогда не встречаются в пресных водах. Наиболее типичные Г.- зелёная водоросль дуналиелла, синезелёная водоросль хлороглея, коловратка Brachionus mulleri, рачок артемия, личинки нек-рых насекомых и др.

ГАЛОГЕНАНГИДРИДЫ кислот, производные кислот, в к-рых гидро-ксильные группы замещены атомами галогенов. Примеры Г.: сулъфурил хлористый SO2Cl2 [Г. серной к-ты H2SO4, т. е. SO2(OH)2], тионил хлористый SOC12 [Г. сернистой к-ты H2SO3, т. е. SO(OH)2], трёххлористый фосфор РС13 [Г. фосфористой к-ты Н3РО3, т. е. Р(ОН)3], ацетилхлорид СН3С ОСl (Г. уксусной к-ты СНзСООН). Г. обладают большой реакционной способностью: атом галогена в них может быть легко замещён на другие группы, напр. -ОН, -OR, -NH2, -SH, -CN. Во влажном воздухе хлорангидриды гидролизуются, образуя летучий хлористый водород ("дымят"), напр.:[0605-3-1.jpg]

Фторангидрид серной кислоты - фтористый сульфурил SO2F2 к гидролизу устойчив. В органич. синтезе Г. органич. к-т используют для введения группы RCO (ацильная группа) в молекулы к.-л. соединений [0605-3-2.jpg](реакция ацилирования):

Для этой цели чаще всего используют хлорангидриды органич. к-т, получаемые взаимодействием карбоновых к-т с хлорангидридами неорганич. к-т (РС13, РС15, SOCh):

[0605-3-3.jpg]

Г. большинства неорганич. к-т, а также хлорангидриды низших карбоновых к-т алифатич. ряда - жидкости с крайне резким запахом.

ГАЛОГЕНЕЗ (от греч. hals - соль и genesis - происхождение), процессы формирования испарением рассолов в поверхностных бассейнах аридной зоны, осаждения из них и образования отложений легкорастворимых солей.

Выделяют две стадии Г.: длительную подготовительную, когда происходит накопление осн. запасов концентрированных рассолов, и короткую, в течение к-рой из этих рассолов формируются осадки легкорастворимых солей (см. Галогенные породы). Различают три осн. химич. типа Г.- карбонатный (содовый), сульфатный и хлоридный, отличающихся набором минералов и характерных микроэлементов. По генезису питающих вод Г. подразделяют на континентальный и морской; последний в истории Земли играл особенно большую роль, достигая огромных масштабов. Необходимыми условиями для развития Г. являются: аридный климат; возможность интенсивного питания басе, (напр., морской водой), но без обратного стока сконцентрированных рассолов; постоянный и неравномерный прогиб территории, где происходит солеотложение. В результате процесса Г. формируются не только отложения солей, но и осн. запасы высококонцентрированных рассолов в недрах Земли.

Лит.: Курнаков Н. С., Собр. избр. работ, т. 2, Л., 1939; Страхов Н. М., Основы теории литогенеза, т. 3, М., 1962; Валяшко М. Г., Геохимические закономерности формирования месторождений калийных солей, М., 1962; Фивег М. П., Типы солеродных бассейнов, "Тр. Всесоюзного научно-исследовательского ин-та галургии", 1956, в. 32, с. 102-10. М. Г. Валяшко.

ГАЛОГЕНИДЫ ПРИРОДНЫЕ, группа минералов солеобразных соединений, являющихся простыми или сложными производными галоидоводородных кислот HF, HCI, НВг и HI. В сложных галогенидах наряду с анионами-галогенами в структуру минералов входят О2-, (ОН)- (т. н. окси- и гидрооксигалогени-ды) или молекулярная вода кристалло-гидратного типа (водные галогениды). Резкое отличие кристаллохимич. свойств иона F- от др. галогенионов Сl-, Вr-, I-(размеры ионных радиусов, величины потенциала ионизации) приводит к необходимости делить Г. п. на два крупных класса: а) фториды; б) хлориды, бромиды и иодиды. В классе фторидов известно ок. 30 минеральных видов, большинство к-рых являются редкими минералами. Чаще всего в месторождениях встречаются: простые фториды - виллиомит NaF, флюорит CaF2, флюоцерит (Се, La) F3; сложные фториды - крио-лит Na3AlF6, криолитионит Na3Аl2[LiF4]3, томсенолит NaCaAIF6*Н2О, геарксу-тит CaAlF4(OH)*H2O, кридит Ca3Al2F8(OH)2[SO4]*2H2O. В геохимическом отношении соединения с F отличаются большей химической устойчивостью, наличием существенно ионной связи в кристаллических структурах минералов, способностью F образовывать в минералах комплексные радикалы типа [A1F6] и [SiF6]. Фториды образуются преим. в пегматитах (кислых и щелочных пород), пневматолито-гидротермальных жилах, грейзенах, скарнах и др. месторождениях метасоматич. происхождения.

В классе хлоридов, бромидов, иодидов известно св. 70 минеральных видов. Наиболее распространены минералы, содержащие катионы Na, К, Mg, Fe, а также Ag, Cu, Pb, Hg, Bi: галит NaCl, сильвин КС1, карналлит KClMgCl2*6Н2О, бишофит MgCl2*6H2O, кераргирит AgCl, атакамит СuСl2(ОН)3, болеит РЬ3 Cu3 AgCl7 (OH)6, бисмоклит BiClO, котунит РЬС12. Природные бромиды и иодиды представлены редкими бромарги-ритом AgBr, эмболитом Ag(Cl, Br), маршитом Cul и иодаргиритом Agl. Встречаются хлориды, бромиды и иодиды гл. обр. в минеральных ассоциациях гипергенных процессов, где преимуществ, гео-химич. роль играет хлор, образуя минералы химич. осадков в месторождениях природных солей (см. Соли природные), а также более редкие соединения с типич. металлич. катионами (Ag, Cu, Pb, Hg) в нек-рых типах зон окисления рудных полиметаллич. месторождений.

Лит.: Ферсман А. Е., Избр. труды, т. 5, М., 1959; Минералы. Справочник, т. 2, в. 1, М., 1963. Г. П. Варенное.

ГАЛОГЕНИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ, введение галогенов (Cl, Br, F, I) в молекулы органич. соединений замещением в них атомов водорода атомами галогенов. Наибольшее значение имеет хлорирование органических соединений.

ГАЛОГЕННЫЕ ПОРОДЫ, осадочные породы, возникающие путём кристаллизации из растворов в процессе галогенеза. Г. п. широко распространены и являются одним из осн. типов осадочных пород. Главные составляющие Г. п.- одна или несколько легкорастворимых солей с примесью аутигенных (см. Аутигенные минералы) труднорастворимых минералов (карбонатов и др.) и снесённого терригенного материала.

К Г. п. относятся галитовые породы, состоящие из галита, сильвинитовые породы, в к-рых наряду с галитом присутствует сильвин, а также карналлито-вые (карналлит, галит), гипсовые (гипс), астраханитовые (астраханит, галит), содовые (сода, мирабилит, иногда галит), полиминеральные (лангбейнит, каинит, кизерит, сильвин, галит, полигалит) и др.

Г. п. отличаются малой устойчивостью к воздействию внешних агентов, прежде всего воды, и легко растворяются и разрушаются. Г. п. иногда называют также соляными породами, эвапоритами.

М. Г. Валяшко.

ГАЛОГЕНОВОДОРОДЫ, химические соединения галогенов с водородом, напр, хлористый водород НС1. При обычных условиях Г.- газы, легко растворимые в воде; их водные растворы - кислоты, напр, соляная кислота - водный раствор НС1.

ГАЛОГЕНЫ (от греч. hals - соль и ...genes - рождающий, рождённый), химические элементы фтор F, хлор С1, бром Вг, иод I и астат At, составляющие главную подгруппу VII группы перио-дич. системы Д. И. Менделеева. Названы Г. по свойству давать соли при соединении с металлами (напр., поваренную соль NaCl). Иногда пользуются названием галоиды. Атомы Г. имеют во внешней электронной оболочке по 7 электронов (конфигурация S2p5, см. Лтом), т. е. до устойчивой 8-электронной конфигурации инертного газа (s2p6) им не хватает одного электрона. Реагируя с металлами, каждый атом Г. отнимает у них по электрону, проявляя т. о. окислит, свойства (см. Окисление-восстановление). Все Г. весьма реакционноспособны, они непосредственно соединяются с большинством химич. элементов. Химич. активность Г. падает от фтора к иоду, по мере увеличения атомного радиуса. При обычных условиях фтор и хлор - газы, бром - жидкость, иод и астат - твёрдые вещества. Астат - радиоактивный элемент. Молекулы Г. двухатомны.

ГАЛОИДЫ, то же, что галогены.

ГАЛОНЕН (Наlоnеn)Пекка (1865-1933), финский живописец; см. Халонен П.

ГАЛОП, один из аллюров лошади.

ГАЛОП (франц. galop), бальный танец 19 в., исполнявшийся в стремительном, скачкообразном движении. Муз. размер 2/4. Г. возник, по-видимому, в Германии. В нач. 19 в. распространился по всей Европе. Применялся в опере, оперетте, балете. Пользовались известностью галопы Э. Вальдтейфеля, И. Лайнера, И. Штрауса-сына. Высокохудожеств. образцы Г. создали Ф. Шуберт, Ф. Лист, М. И. Глинка, П. И. Чайковский.

ГАЛОФИЛЬНЫЕ МИКРООРГАНИЗМЫ (от греч. hals - соль и phileo - люблю), бактерии, дрожжи или плесневые грибы, способные расти в присутствии высоких концентраций хлористого натрия (NaCl). Г. м. устойчивы к высокому ос-мотич. давлению и к специфич. действию NaCl. Нек-рые Г. м. развиваются в жидких питательных средах, содержащих 25% NaCl, и не растут в его отсутствии. Г. м. обитают в океанах, морях, соляных озёрах, почве солончаков и т. п. Мн. виды Г. м. образуют оранжевые или красные пигменты (каротиноиды). Развитие таких Г. м. на солёной рыбе или солёных шкурах животных сопровождается появлением красных пятен. А. А. Имшенецкий.

ГАЛОФИТЫ (от греч. hals - соль и phyton - растение), растения, произрастающие на сильно засоленных почвах: по берегам морей, на солончаках и т. п. Различают 3 группы Г. Солянки (эвгалофиты, или настоящие Г.), клетки к-рых имеют протоплазму, очень устойчивую к высоким концентрациям солей (гл. обр. хлористого и сернокислого натрия), и накапливают их в значительном количестве. Они б. ч. обладают мясистыми листьями и стеблями. В СССР из солянок распространены солерос, све-да и ряд пустынных полукустарников. Криногалофиты - растения, способные выделять наружу скопляющиеся в них соли при помощи особых желёзок, покрывающих листья и стебли. В сухую погоду они покрываются сплошным налётом солей,к-рый впоследствии частью сдувается ветром, частью смывается дождями. К этой группе относятся распространённые в полупустынях и сухих степях виды кермека, тамариксы и др. Гликогалофиты - растения, корневая система к-рых очень мало проницаема для солей, и поэтому в их тканях не происходит накопления солей. Это - различные виды полыни, покрывающие в СССР огромные пространства засоленных полупустынь, и др. растения. Среди культурных растений настоящих Г. нет, существуют лишь растения, обладающие большей или меньшей степенью солеустой-чивости. См. Солестойкость растений.

ГАЛС (голл. hals), 1) курс судна относительно ветра (напр., судно идёт правым Г., когда ветер дует в правый борт судна). 2) Отрезок пути судна от поворота до поворота при лавировании под парусами, выполнении промерных работ, тралении мин, ловле рыбы и т. д. 3) Снасть, крепящая к мачте нижний наветренный угол паруса (галсовый угол).

ГАЛСАНОВ Цэдэн (Цыдецжап) Галса-нович [р. 10(23).2.1917, улус Илька, ныне Заиграевский аймак Бурят. АССР], бурятский советский поэт. Чл. КПСС с 1962. Печатается с 1931. Автор поэм "Четыре дня и три ночи" (1939), "Соревнование на мудрость" (1940), "Эхо на Чудском озере" (1943), "Павел Балтахинов" (1945) - о нар. герое, "Поэма о пятилетке" (1947), "Мои весёлые друзья" (1962); сб-ков стихов "Байкальские волны" (1940), "Советское солнце" (1951), "Мы молоды" (1959) и др. Творчество Г. посвящено теме дружбы и единства сов. народов и их трудовым подвигам. Переводил на бурят, яз. произв. А. С. Пушкина, А. С. Грибоедова, Н. А. Некрасова, В. В. Маяковского. Награждён орденом "Знак Почёта" и медалями.

С о ч.: Шэлэгдэмэл зохёолнууд, Улан-Удэ, 1948; Дуунайм дээжэ, Улан-Удэ, 1962; в рус, пер. - Избр. произведения. Стихи и поэмы, Улан-Удэ, 1948; Байкальские стихи, М.,1960. Лит.: Хамаганов М. П., Основные черты творчества Цэдэна Галсанова,Улан-Удэ, 1948; Писатели Советской Бурятии. Биобиблиографический справочник, Улан-Удэ, 1959; История бурятской советской литературы, Улан-Удэ, 1967.

ГАЛСТУШНИК (Charadrius hiaticula), кулик рода ржанок.

ГАЛТЕЛЬ (от нем. Hohlkehle), профилированная рейка (брусок, планка), служащая для прикрытия щелей в стыках соединений (напр., между полом и стеной), выступающих рёбер и краёв (напр., в мебели) и т. д. Под Г. понимают также скругление внешних и внутр. углов на деталях машин, в литейных формах и т. п. Г. облегчают изготовление и обработку деталей, предупреждают возникновение трещин в местах сопряжений.

ГАЛТОВКА, процесс очистки поверхности небольших заготовок и деталей от заусенцев, окалины, формовочной земли, коррозии и др. Служит также для улучшения качества поверхности изделий - полирования. Г. осуществляется в барабанах. Для ускорения Г. в барабан вместе с деталями загружают абразивные материалы - песок, наждак, корунд и др. (сухая Г.), а иногда заливают различные растворители (мокрая Г.). Для полирования в барабаны вместе с деталями загружают деревянные опилки, обрезки кожи и др. (сухое полирование), иногда вводят растворы мыла, щёлочи и др. (мокрое полирование). Для лучшего перемешивания применяют барабаны с эксцентричным вращением.

При виброгалтовке рабочим камерам сообщают колебания в неск. направлениях с частотой от 15 до 50 гц, что обеспечивает сложное перемещение деталей и абразивных частиц. Виброгал-товка позволяет обрабатывать крупные детали (в закреплённом виде).

Применяют также гидрогалтов-к у, при к-рой создаётся поверхностный наклёп, повышающий усталостную прочность материала детали. При гидрогал-товке детали закрепляются в камере, внутри к-рой движется жидкость с мелкой металлич. дробью.

Д. И. Браславский, В. М. Раскатов.

ГАЛУА (Galois) Эварист (26.10.1811, Бур-ла-Рен, близ Парижа,-30.5.1832, Париж), французский математик, исследования к-рого оказали исключительно сильное влияние на развитие алгебры. Учился в лицее Луи-ле-Гран, к моменту окончания к-рого уже вёл творч. работу по математике. В 1830 поступил в Высшую нормальную школу. Был исключён (1831) из неё по политич. мотивам. К этому времени относится начало активной политич. деятельности Г.: он входил в тайное республиканское об-во "Друзья народа". За публичное выступление против королевского режима дважды подвергался тюремному заключению. Почти сразу после освобождения, в возрасте 21 г., был убит на дуэли, по всей видимости, спровоцированной его политич, противниками.

Математич. наследие Г. составляет небольшое число очень сжато написанных работ, не понятых современниками. Г., по существу, построил всю теорию конечных полей (называемых ныне полями Г.). В письме к другу, написанном накануне дуэли, Г. формулирует осн. теоремы об интегралах от алгебр, функций, вновь открытые значительно позже в работах Б. Римана. Осн. заслугой Г. является формулировка комплекса идей, к к-рым он пришёл в связи с продолжением исследований о разрешимости в радикалах алгебр, ур-ний, начатых Ж. Лагранжем, Н. Абелем и др. Построенная в результате этого Галуа теория, устанавливая описание расширений полей в терминах групп, напоминающее описание симметрии многогранника, сводит вопросы, касающиеся полей, к вопросам теории групп (возникшей именно отсюда). Портрет стр. 69.

Соч.: Сочинения, пер. с франц., М - Л., 1936.

Лит.: Инфельд Л., Эварист Галуа. Избранник богов, пер. с англ., [М.], 1958; Дальма А., Эварист Галуа, революционер и математик, пер. с франц., М., 1960.

А. И. Скопим.

ГАЛУА ТЕОРИЯ, созданная Э. Галуа теория алгебр, ур-ний высших степеней с одним [0605-3-4.jpg]неизвестным, т. е. ур-ний вида

устанавливает условия сводимости решения таких ур-ний к решению цепи др. алгебр, ур-ний (обычно более низких степеней). Т. к. решением двучленного ур-ния[0605-3-5.jpg] является радикал [0605-3-6.jpg]то ур-ние (*) решается в радикалах, если его можно свести к цепи двучленных ур-ний. Все ур-ния 2-й, 3-й и 4-й степеней решаются в радикалах. Ур-ние 2-й степени x2 + px + q = 0 было решено в глубокой древности по общеизвестной формуле[0605-3-7.jpg] Ур-ния 3-й и 4-йстепеней были решены в 16 в. Для ур-ния 3-й степени вида х3 + рх + q = 0 (к к-рому можно привести всякое ур-ние 3-й степени) решение даётся т. н. формулой Кардано:
[0605-3-8.jpg]

опубликованной Дж. Кардано в 1545, хотя вопрос о том, найдена ли она им самим или же заимствована у др. математиков, нельзя считать вполне решённым. Метод решения в радикалах ур-ний 4-й степени был указан Л. Феррари. В течение трёх последующих столетий математики пытались найти аналогичные формулы для ур-ний 5-й и высших степеней. Наиболее упорно над этим работали Э. Безу и Ж. Лагранж. Последний рассматривал особые линейные комбинации корней (т. н. резольвенты Лагранжа), а также изучал вопрос о том, каким ур-ниям удовлетворяют рациональные функции от корней ур-ния (*). В 1801 К. Гаусс создал полную теорию решения в радикалах двучленного ур-ния вида хn = 1, в к-рой свёл решение такого ур-ния к решению цепи двучленных же ур-ний низших степеней и дал условия, необходимые и достаточные для того, чтобы ур-ние xn = l решалось в квадратных радикалах. С точки зрения геометрии, последняя задача заключалась в отыскании правильных n-угольников, к-рые можно построить при помощи циркуля и линейки; поэтому ур-ние xn = l и называется ур-нием деления круга. Наконец, в 1824 Н. Абель показал, что общее ур-ние 5-й степени (и тем более общие ур-ния высших степеней) не решается в радикалах. С другой стороны, Абель дал решение в радикалах одного общего класса ур-ний, содержащего ур-ния произвольно высоких степеней, т. н. абелевых уравнений.

Т. о., когда Галуа начал свои исследования, в теории алгебр, ур-ний было сделано уже много, но общей теории, охватывающей все возможные ур-ния вида (*), ещё не было создано. Напр., оставалось: 1) установить необходимые и достаточные условия, к-рым должно удовлетворять ур-ние (*) для того, чтобы оно решалось в радикалах; 2) узнать вообще, к цепи каких более простых ур-ний, хотя бы и не двучленных, может быть сведено решение заданного ур-ния (*) и, в частности, 3) выяснить, каковы необходимые и достаточные условия для того, чтобы ур-ние (*) сводилось к цепи квадратных ур-ний (т. е. чтобы корни ур-ния можно было построить геометрически с помощью циркуля и линейки). Все эти вопросы Галуа решил в своём "Мемуаре об условиях разрешимости уравнений в радикалах", найденном в его бумагах после смерти и впервые опубликованном Ж. Лиувиллемъ 1846. Для решения этих вопросов Галуа исследовал глубокие связи между свойствами ур-ний и групп подстановок, введя ряд фундаментальных понятий теории групп. Своё условие разрешимости ур-ния (*) в радикалах Галуа формулировал в терминах теории групп. Г. т. после Галуа развивалась и обобщалась во мн. направлениях. В совр. понимании Г. т.- теория, изучающая те или иные математич. объекты на основе их групп автоморфизмов (так, напр., возможны Г. т. полей, Г. т. колец, Г. т. топологич. пространств и т. п.).

Лит.: Галуа Э., Сочинения, пер. с франц., М.- Л., 1936; Чеботарев Н. Г., Основы теории Галуа, т. 1 - 2, М.- Л., 1934-37; Постников М. М., Теория Галуа, М., 1963.

ГАЛУН (от франц. galon), плотная лента или тесьма разных цветов, вырабатываемая из хл.-бум. пряжи, шёлка, часто с золотой, серебряной нитью или мишурой. Используется для изготовления знаков различия на форменную одежду.

ГАЛУППИ (Galuppi), по прозванию Буранелло (по месту рождения) Бальдассаре (18.10.1706, о. Бурано, близ Венеции,-3.1.1785, Венеция), итальянский композитор. Руководил капеллой собора Сан-Марко в Венеции. В 1765-68 был придворным капельмейстером в Петербурге, где поставил свои Оперы: "Король-пастух" и "Покинутая Дидона" (1766), "Ифигения в Тавриде" (1768). Г.- представитель венецианской школы, виднейший мастер оперы-буффа. Автор многочисл. опер, 20 из них - на либр. К. Гольдони, в т. ч. одна из популярнейших-"Сельский философ" (1754). Г. принадлежат также драматич. кантаты, серенады, оратории, духовные концерты, сонаты и концерты для клавира и др.

Лит.: Финдейзен Н., Очерки по истории музыки в России с древнейших времен до XVIII века, т. 2, в. 5, М.- Л., 1928; Келдыш Ю. В., Русская музыка XVIII в., М., 1965; Dеlla Corte А., В. Galuppi, Siena, 1948; Moose r R. A., Anna.es de la musique et des musicians en Russie au XVIII siecle, v. 2. Gen., 1951.

ГАЛУРГИЯ (от греч. hals - соль и ergon - дело, работа), раздел хим. технологии, посвящённый произ-ву минеральных солей. В узком смысле слова к Г. относят переработку природных солей. Сырьём для галургич. произ-в служат мор. вода и отложения солей, образовавшихся при её концентрировании в засушливом климате, а также озёрные и подземные рассолы. Для выделения отдельных солей используются процессы испарения и кристаллизации как в естественных (в специально устроенных бассейнах), так и в заводских условиях. Теоретич. основой галургич. процессов служат диаграммы растворимости солей; практически наиболее важны водные системы, образованные хлоридами и сульфатами натрия, калия и магния, изученные Я. X. Вант-Гоффом с сотрудниками (в 1897-1908) в Германии и Н. С. Курнако-вым с сотрудниками (с 1917) в СССР. Для Г. характерно комплексное использование сырья; так, из рассолов мор. типа добывают поваренную соль, сульфат натрия, сульфат, хлорид и окись магния, бром. Из рапы соляных озёр, кроме того, получают соду, буру, соли лития. Из минерали-зов. вод нефт. месторождений извлекают бром и иод. При переработке природных калийных солей наряду с хлоридом и сульфатом калия получают хлорид и сульфат магния, бром, соли рубидия и цезия. См. также статьи об отдельных солях. Лит.: Позин М. Е., Технология минеральных солей, 3 изд.. ч. 1 - 2, Л., 1970; Вант-Гофф Я. .Г., Океанические соляные отложения, пер. с нем., Л., 1936; Курнаков Н. С., Избр. труды, т. 3, М., 1963; Грушвицкий В. Е., физико-химический анализ в галургии, Л., 1937; Бергман А. Г. и Лужная Н. П., Физико-химические основы изучения и использования соляных месторождений хлорид-сульфатного типа, М., 1951.

Д. С. Стасиневич.

"ГАЛФ ОЙЛ", нефтяная монополия США; см. в ст. Нефтяные монополии.

ГАЛФВИНД (голл. halfwind, букв.- полветра), курс парусного судна, при к-ром его продольная ось перпендикулярна направлению ветра.

ГАЛЧИНЬСКИЙ (Galczynski) Константы Ильдефонс (23.1.1905, Варшава,- 6.12.1953, там же), польский поэт. Печатался с 1923. В 1928 примкнул к лит. группе "Квадрига". Первые книги - са-тирич. повесть "Ослик Порфирион" (1929) и поэма "Конец света" (1930). Произв. Г. 30-х гг. содержат критику правящих кругов Польши. В 1939-45 Г. был в нем. лагере для военнопленных. В 1946 вернулся в Польшу. Писал сатирич. стихи, поэтич. фельетоны "Письма с фиалкой" (1948), создал цикл гротескных сатирич. миниатюр "Зелёный гусь". В лирич. стихах Г. выражены любовь к родине, труду, иск-ву. В стиле Г. сочетаются элементы лирики, юмора, иронии, гротеска. Поэма "Вит Ствош" (1952) посвящена гениальному скульптору средневековья; цикл лирических миниатюр "Песни" (1953) полон раздумий о жизни, любви, искусстве.

Соч.: Dzieta, t. 1 - 5, [Warsz.], 1957 - 60; в рус. пер.- Варшавские голуби, М., 1962; Стихи, М.. 1967 [предисл. Д. Самойлова]. Лит.: В {on ski J., Gatczyriski. 1945- 1953, Warsz., 1955; Drawiсz A., K. J. Galczynski, Warsz., 1968 (библ.); Хоре в В. А., Константы Ильдефонс Галчиньский, в кн.: История польской литературы, т. 2, М., 1969. В. А. Хорее.

ГАЛЬБА Сервий Сульпиций (Servius Sulpicius Galba) (ок. 3 до н. э.-69 н. э.), римский император (правил в68-69 н. э.). Будучи наместником провинции Тарраконская Испания, Г. вместе с Г. Вин-дексом возглавил в 68 восстание войск против Нерона; после смерти последнего был провозглашён императором легионами Тарраконской Испании и утверждён сенатом. Придя к власти, быстро вызвал против себя недовольство войск и преторианцев из-за введения суровой дисциплины в армии и отказа выдать войску обещанные подарки. Был убит во время мятежа войск. Е. М. Штаерман.

ГАЛЬБАН (лат. galbanum, от греч. chal-Ьапё), камеде-смола, получаемая из растений рода ферулы сем. зонтичных. В основном Г. добывают из Ferula galbaniflua, растущей по сухим степным склонам в горах Туркмении и Ирана. Г. добывают подсочкой стеблей и из естеств. наплывов, образующихся на местах, пораненных насекомыми. Г. имеет жёлто-бурую окраску, морковный запах, горький вяжущий вкус; содержит 24-66% смолы, 11 -19% камеди и 6-10% эфирных масел.

ГАЛЬБЕРГ Самуил (Фридрих) Иванович [2(13).12.1787, мыза Каттентак, Эстония, -10(22 ).5.1839, Петербург], русский скульптор. Учился в петерб. АХ (1795-1808) у И. П. Мартоса. Пенсионер АХ в Риме (1818-28), где пользовался советами Б. Торвальдсена. Преподавал в петерб. АХ (с 1829, с 1836 -проф.). Представитель классицизма. В ранний период выступил с идиллич. произв. ("Фавн, прислушивающийся к звуку ветра", гипс, 1825; мрамор, 1830, Рус. музей, Ленинград). В своих скульптурных портретах Г. стремился точно передать черты лица и его наиболее характерное выражение, используя в то же время обобщённые формы античных бюстов (портреты В. А. Глинки, гипс, 18.9, Рус. музей, и А. С. Пушкина, бронза, 1837, Всесоюзный музей А. С. Пушкина, г. Пушкин). Г.- автор эскизов и пооектов памятников Г. Р. Державину в Казани (1833, открыт в 1847, не сохранился), Н. М. Карамзину в Симбирске (ныне Ульяновск; 1836, открыт в 1845).

Лит.: Скульптор Самуил Иванович Галь-берг в его заграничных письмах и записках 1818 - 1828. Собрал В. Ф. Эвальд, СПБ, 1884; Мроз Е., С. И. Гальберг, М.- Л., 1948.

ГАЛЬВАКС, Хальвакс (Halhvachs) Вильгельм (9.7.1859, Дармштадт,-20.6. 1922, Дрезден), немецкий физик. Окончил Страсбургский ун-т в 1883. Профессор (с 1893) Высшего технич. уч-ща в Дрездене. Исследования в области фотоэлектрич. эффекта. Впервые показал, что металлы под действием ультрафиолетового излучения теряют отрицат. заряд.

Соч.: Ober den EinfluB_des Lichtes auf elektrostatisch geladene Korper, "Annalen der Physik und Chemie". 1888, Bd 33; Lichtelek-trische Ermudung, "Anna.en der Physik", 1907. Bd 23.

ГАЛЬВAH (Galvan) Мануэль де Хесус (1834, Санто-Доминго, -1910, там же), доминиканский писатель. Автор ист. романа "Энрикильо" (1882, рус. пер. 1963) о борьбе вождя одного из индейских племён о. Гаити за свободу и независимость. Основанный на тщательном изучении историч. источников, проникнутый духом романтизма, роман живо воссоздаёт картины эпохи.

Лит.: Стюарт Р., "Энрикильо" - книга о борьбе за свободу, "Курьер ЮНЕСКО", 1957, № 6; Ваlaguеr J., Literatura dominicana, В. Aires, [1950]; Melendez C., La novela indianista en Hispanoamerica, [2-a ed.], Rio Piedras, 1961. 3. И. Плавскин.

ГАЛЬВАНИ (Galvani) Луиджи (Алоизий) (9.9.1737, Болонья,-4.12.1798, там же), итальянский анатом и физиолог, один из основателей учения об электричестве, основоположник электрофизиологии. Образование получил в Болонском ун-те, там же преподавал медицину. Первые работы Г. посвящены сравнит, анатомии. В 1771 начал опыты по животному электричеству; исследовал способность мышц препарированной лягушки сокращаться под влиянием электрич. тока; наблюдал сокращение мышц при соединении их металлом с нервами или спинным мозгом, обратил внимание на то, что мышца сокращается при одноврем. прикосновении к ней двух разных металлов. Эти опыты были правильно объяснены А. Вольта и способствовали изобретению нового источника тока - гальванического элемента. В 1791 Г. опубликовал "Трактат о силах электричества при мышечном движении". Новыми опытами (опубл. в 1797) Г. доказал, что мышца лягушки сокращается и без прикосновения к ней металла - в результате непосредственного её соединения с нервом. Исследования Г. имели значение для мед. практики и разработки методов физиол. эксперимента.

Лит.: Лебединский А. В., Роль Гальвани и Вольта в истории физиологии, в кн.: Гальвани А. и Вольта А., Избр. работы о животном электричестве, М.- Л., 1937. Н.А.Григорян.

ГАЛЬВАНИЗАЦИЯ (по имени Л. Гальвани), метод леч. воздействия постоянным током небольшой силы и напряжения. Первые попытки применения такого тока для лечения относятся к нач. 19 в.; систематич. изучение физиологич. и леч. действия началось во 2-й пол. его. Постоянный ток силой до 30 ма и напряжением до 100 в вызывает в тканях перераспределение, т. е. изменение концентрации, ионов, что сопровождается сложными фи-зико-химич. процессами, ведущими к изменению проницаемости клеточных мембран, деятельности ферментов и уровня обменных процессов. В зависимости от методики воздействия и дозировки Г. повышает или снижает функции тканей, оказывает болеутоляющий эффект, улучшает периферич. кровообращение, восстанавливает поражённые ткани, в т. ч. и нервы. Ток, раздражая множество нервных окончаний, вызывает не только местную, но и более или менее выраженную общую реакцию, стимулирует регуляторную функцию нервной системы. Ток для Г. получают от спец. аппаратов (раньше ток получали от гальванич. элементов, аккумуляторов). Ток от аппарата подводится по проводам к больному чаще через пластинчатые электроды. Между металлич. пластинкой и телом для предупреждения ожогов продуктами электролиза помещают гидрофильную прокладку (фланель или спец. пластмассу), смоченную водой. Промежуточной средой между металлич. электродом и кожей может быть также вода, налитая в ванночки. После фиксации электродов включают ток, а затем его постепенно увеличивают до необходимого значения. Интенсивность воздействия дозируют по плотности тока (количество ма/см2 прокладки) и продолжительности процедуры. Процедуру проводят при плотности тока от 0,01 до 0,1 ла/см2 в зависимости от цели воздействия, размеров электродов, возраста, состояния и ощущения больного, к-рый во время процедуры не должен испытывать боли или жжения. По окончании процедуры так же плавно уменьшают ток до полного его выключения. Показания к применению Г.: заболевания и поражения различных отделов периферич. нервной системы инфекционного, токсич. и трав-матич. происхождения (радикулиты, плекситы, невриты, невралгии различной локализации), последствия заболеваний и поражений головного и спинного мозга, мозговых оболочек, невротич. состояния, вегетативно-сосудистые нарушения, хро-нич. воспаления суставов (артриты) трав-матич., ревматич. и обменного происхождения и др.

Лит.: Аникин М. М. и Варшаве р Г. С., Основы физиотерапии, 2 изд., М., 1950; Ливенцев Н. М., Электромедицинская аппаратура, 3 изд., М., 1964, В.Г. Ясногородский.

ГАЛЬВАНИЧЕСКАЯ ВАННА, аппарат для нанесения на поверхность изделия гальванич. покрытий, а также для изготовления изделий гальванопластич. способом. См. Гальванотехника.

ГАЛЬВАНИЧЕСКИЕ ПОКРЫТИЯ, металлич. плёнки толщиной от долей мкм до десятых долей мм, к-рые наносят методом электролитич. осаждения на поверхность металлич. изделий с целью защиты их от коррозии и механич. износа, а также сообщения поверхности специальных физич. и химич. свойств. См. Гальванотехника.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ, устройства, позволяющие получать электрич. ток за счёт хим. реакции. См. Химические источники тока.

ГАЛЬВАНО... (по имени Л. Гальвани), часть сложных слов, употребляющаяся вместо "гальванический", "гальванизм" (напр., гальванометр, гальванопластика).

ГАЛЬВАНОКАУСТИКА (от гальвано... и греч. kaustikos - жгучий), гальванотермия, термокаустика, электрокаустика, прижигание тканей тела особыми металлич. петлями разной формы, т. н. гальванокаутepами, накаливаемыми проводимым через них электрич. током. Г. применяют для разрушения и удаления небольших доброкачеств. опухолей, для разделения сращений и спаек, образующихся между тканями и органами в процессе болезни, для остановки кровотечения из мельчайших кровеносных сосудов - капилляров, выжигания татуировок и т. п. Источниками тока служат гальванич. или аккумуляторные батареи либо используется трансформированный до напряжения 2-4 в при силе 20 ма ток промышлен-но-осветит. сети. См. также Электрокоагуляция. В. Г. Ясногородский.

ГАЛЬВАНОМАГНИТНЫЕ ЯВЛЕНИЯ, совокупность явлений, связанных с действием магнитного поля на электрич. (гальванич.) свойства твёрдых проводников (металлов и полупроводников), по к-рым течёт ток. Наиболее существенны Г. я. в магнитном поле Н, перпендикулярном току (поперечные Г. я.). К ним относится эффект Холла - возникновение разности потенциалов (эдс Холла VH) в направлении, перпендикулярном полю Н и току j (j - плотность тока), и изменение электрич. сопротивления проводника в поперечном магнитном поле. Разность Др между сопротивлением р проводника в магнитном поле и без поля часто наз. магнетосопро-тивлением.

Мерой эффекта Холла служит постоянная Холла:[0605-3-9.jpg]

Здесь d - расстояние между электрич. контактами, с помощью к-рых измеряют эдс Холла. Постоянная Холла в широких пределах не зависит от величины магнитного поля (а для металлов и от темп-ры). Линейная зависимость Vн от магнитного поля Н используется для измерения магнитных полей (см. Магнитометр).

В электронных проводниках, в к-рых ток переносится "свободными" электронами (электронами проводимости), согласно простейшим представлениям, постоянная Холла выражается через число электронов проводимости п в см3: R = = 1/пес (е-заряд электрона, с-скорость света). Поэтому измерение R служит одним из осн. методов оценки концентрации электронов проводимости п в электронных проводниках. У электронных проводников R имеет знак минус. У полупроводников с дырочной проводимостью и у нек-рых металлов постоянная Холла имеет знак плюс, соответствующий положительно заряженным носителям тока - дыркам (см. Твёрдое тело). Т. к. эдс Холла меняет знак при изменении направления магнитного поля на обратное, то эффект Холла наз. нечётным Г. я.

Относительное изменение сопротивления в поперечном поле [0605-3-10.jpg]в обычных условиях (при комнатной темп-ре) очень мало: у хороших металлов[0605-3-11.jpg] ~ 10~4 при Н~104э. Важным исключением является висмут (Bi), у к-рого[0605-3-12.jpg]при Н = 3*104 э. Это позволяет его использовать для измерения магнитного поля. У noлупроводников изменение сопротивления несколько больше, чем у металлов: [0605-3-13.jpg]~10-2-10-1 и существенно зависит от концентрации примесей в полупроводнике и от темп-ры. Напр., у достаточно чистого германия [0605-3-14.jpg]при Т = 90 К и H=1,8-104э.

Понижение темп-ры и увеличение магнитного поля приводят к увеличению [0605-3-15.jpg]П. Л. Капица (1929), используя магнитные поля в неск. сот тысяч э и сравнительно низкие темп-ры (темп-pa жидкого азота), обнаружил существ, увеличение сопротивления большого числа металлов и показал, что в широком интервале магнитных полей [0605-3-16.jpg]линейно зависит от магнитного поля (закон Капицы).

В слабых магнитных полях[0605-3-17.jpg] пропорционально Н2. Коэфф. пропорциональности между[0605-3-18.jpg] и Н2 положителен, т. е. сопротивление растёт с увеличением магнитного поля. Изменение сопротивления в магнитном поле наз. чётным Г. я., т. к.[0605-3-19.jpg]не изменяет знак при изменении направления поля Н на обратное.

Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов кристаллич. решётки), а также к темп-ре, то каждое измерение приводит к новой зависимости[0605-3-20.jpg] от Н. Имеющиеся экспериментальные данные для металлов удобно описывать, выразив [0605-3-21.jpg]в виде функции от НЭФ = = Нрзоо/р, где[0605-3-22.jpg]-сопротивление данного металла при комнатной темп-ре (Т = ЗООК), а [0605-3-23.jpg]-при темп-ре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).

Осн. причина Г. я.-искривление траекторий носителей тока (электронов проводимости и дырок) в магнитном поле (см. Лоренца сила). Траектория носителей в магнитном поле может существенно отличаться от траектории свободного электрона в магнитном поле - круговой спирали, навитой на магнитную силовую линию. Разнообразие траекторий носителей тока у различных проводников - причина разнообразия Г. я., а зависимость траектории от направления магнитного поля - причина анизотропии Г. я. в монокристаллах. Мерой влияния магнитного поля на траекторию электрона является отношение длины свободного пробега I электрона к радиусу кривизны его траектории в поле H: rH = ср/еН (р-импульс электрона). По отношению к Г. я. магнитное поле считают слабым, если [0605-3-24.jpg]= = el/ср, и сильным, если[0605-3-25.jpg]

При комнатных темп-pax для различных металлов и хорошо проводящих полупроводников Н0 ~ 105-107э, для плохо проводящих полупроводников Н0~108-109э. Понижение темп-ры увеличивает длину пробега l и потому уменьшает значение Но. Это позволяет, используя низкие темп-ры и обычные магнитные поля (~104Э), осуществлять условия, соответствующие сильному полю Н>> Н0.

Измерение сопротивления монокри-еталлич. образцов металлов в сильных магнитных полях - один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины магнитного поля и его направления относительно кристаллографич. осей. Теория Г. я. показала, что зависимость сопротивления от поля Н существенно связана с энергетич. спектром электронов. Резкая анизотропия сопротивления в сильных магнитных полях (у Au, Ag, Си, Sn и др.) означает существ, анизотропию Ферми поверхности. И, наоборот, небольшая анизотропия сопротивления в магнитном поле означает практич. изотропию поверхности Ферми. При этом, если с ростом магнитного поля для всех направлений р не стремится к насыщению (Bi, As и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).

Наряду с поперечными Г. я. наблюдается также небольшое изменение сопротивления металлов в магнитном поле, параллельном току I: [0605-3-26.jpg]наз. продольным гальваномагнитным эффектом. В сильных магнитных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.

При изучении Г. я. в тонких плёнках и проволоках имеет место зависимость от размеров и формы образца (размерные эффекты). С ростом Н при rH<
Лит.: Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, "Успехи физических наук", 1965, т. 87, в. 3; Займам Д ж., Принципы теории твердого тела, пер. с англ., М., 1966. М. И. Коганов.

ГАЛЬВАНОМЕТР (от гальвано... и ...метр), высокочувствительный электроизмерительный прибор, реагирующий на весьма малую силу тока или напряжение. Наиболее часто Г. используют в качестве нуль-индикаторов, т. е. устройств для индикации отсутствия тока или напряжения в электрич. цепи. Применяют Г. и для измерений малых силы тока и напряжения, определив предварительно постоянную прибора (цену деления шкалы). Различают Г. постоянного и переменного тока. Первые Г. постоянного тока были созданы в 20-х годах 19 в. и по принципу действия являлись приборами магнитоэлектрической системы (см. Магнитоэлектрический прибор измерительный). Они состояли из магнитной стрелки, подвешенной на тонкой нити и помещённой внутри катушки из проволоки. При отсутствии тока в катушке стрелка устанавливается по магнитному меридиану данного места. Появление тока вызывает отклонение стрелки от первоначального положения. В 19 в. было создано много конструктивных разновидностей Г. с подвижной магнитной стрелкой и они широко применялись при научных исследованиях электромагнитных явлений. Так, напр., в 1886 Г. Кольрауш, пользуясь таким Г., определил с высокой точностью электрохим. эквивалент серебра.

В 1881 франц. учёный Ж. А. д'Арсонваль создал Г. с подвижной катушкой, в к-ром подвижным элементом служил проводник с током, помещённый в поле постоянного магнита. В зависимости от конструкции подвижной части такие Г. подразделяют на Г. рамочные, вибрационные и зеркальные.
[0605-3-27.jpg]

Рис. 1. Рамочныйгальванометр: 1- постоянный магнит; 2- рамка; 3 - стрелка-указатель; 4- выводы рамки; 5 - шкала.

(подвижная часть - рамка с неск. витками проволоки), петлевые (подвижная часть - петля из одного витка проволоки) и струнные (подвижная часть - провод, натянутый как струна). В качестве примера на рис. 1 показано устройство рамочного Г. В поле постоянного магнита 1 расположена рамка 2, на оси к-рой укреплена стрелка-указатель 3. Протекающий по виткам рамки ток взаимодействует с полем постоянного магнита и создаёт вращающий момент, вызывающий поворот подвижной части и соответственно перемещение стрелки относительно шкалы. Для повышения чувствительности Г. на подвижной части вместо стрелки-указателя укрепляют миниатюрное зеркальце оптич. отсчётного устройства. На рис. 2 показан зеркальный Г. с оптическим устройством. Луч света от осветителя 1 падает на зеркальце 3 и, отражаясь от него, попадает на шкалу 4. Шкалу устанавливают на расстоянии 1,5-2 м от Г., поэтому даже весьма малые угловые перемещения зеркальца вызывают заметные отклонения светового пятна на шкале от его нулевогоположения. Разновидностью являются Г. со световым отсчётом, у к-рых осветитель и шкала размещены в одном корпусе с механизмом Г. В этом случае для получения достаточной длины светового луча применяют многократное отражение его от неск. неподвижных зеркал.

Рис. 2. Зеркальный гальванометр: 1 - осветитель (лампа); 2 - гальванометр; 3 - зеркальце; 4 - шкала.
[0605-3-28.jpg]

При прохождении по обмотке Г. кратковременного импульса тока получается баллистич. отброс подвижной части из нулевого положения с последующим возвращением к нему после неск. колебаний. Если длительность импульса значительно меньше периода собств. колебаний подвижной части, то первое наибольшее отклонение указателя пропорционально количеству электричества, перенесённого импульсом. Для измерения количества электричества при сравнительно продолжит, импульсах изготовляют Г. баллистические, у к-рых момент инерции подвижной части значительно больше, чем у обычных Г. С помощью баллистических Г. можно измерять количество электричества при импульсах продолжительностью до 2 сек.

Для обнаружения малых значений силы переменного тока или напряжений применяют Г. вибрационные переменного тока и с преобразователями переменного тока в постоянный. Вибрационные Г. по принципу действия идентичны Г. постоянного тока и отличаются от них только тем, что имеют очень малый момент инерции подвижной части. Устройство вибрационного Г. с подвижным магнитом показано на рис. 3. Подвижная пластинка 3 из магнитомягкой стали помещается между полюсами постоянного магнита 1 в поле электромагнита 2 (между полюсами п и т).
[0605-3-29.jpg]

Рис. 3. Вибрационный гальванометр: 1 - постоянный магнит; 2 - электромагнит; 3 - подвижная пластинка; 4 - бронзовая ленточка; 5 - обмотка для измеряемого тока; 6 - щель оптической системы; 7 - шкала.

Пластинка 3 укрепляется вместе с маленьким зеркальцем на бронзовой ленточке 4. Измеряемый переменный ток, проходя по обмотке 5 электромагнита 2, создаёт переменное магнитное поле, накладывающееся на постоянное поле постоянного магнита 1. Результирующее магнитное поле меняет своё направление с частотой переменного тока и вызывает колебания пластинки 3; при этом чёткое изображение на шкале 7 световой щели 6 размывается в световую полоску. Ширина полоски пропорциональна силе переменного тока в обмотке электромагнита 2. Чувствительность вибрац. Г. получается максимальной, когда частота собств. колебаний подвижной части Г. равна частоте переменного тока, поэтому все вибрац. Г. имеют приспособления для изменения частоты собств. колебаний в целях настройки подвижной части в резонанс с исследуемым переменным током. Вибрационные Г. изготовляются для работы при частотах не св. 5 кгц.

Термогальванометр - Г. переменного тока с термопреобразователем, имеющий механизм магнитоэлект-рич. Г. с подвижной рамкой в виде одного витка. Половины этого витка выполнены из различных металлов и образуют термопару. Вблизи одного из спаев расположен нагреватель, к к-рому подводят измеряемый переменный ток. Возникающий в рамке термоток отклоняет её от нулевого положения. Этот Г. может применяться для работы при частотах св. 5 кгц.

Осн. характеристикой Г. является чувствительность или величина, ей обратная,- постоянная Г. Совр. Г. постоянного тока серийного производства позволяют обнаруживать токи силой ок. 5*10-11 а и напряжения порядка 5*10-8 в. Постоянные вибрационных Г. переменного тока имеют порядок 1*10-7 а/деление.

Лит.: Черданцева З. В., Электрические измерения, З изд., М.- Л., 19ЗЗ; Карандеев К. Б., Гальванометры постоянного тока, Львов, 1957; Арутюнов В. О., Электрические измерительные приборы и измерения, М., 1958.

Н. Г. Вострокнутьв.

ГАЛЬВАНОПЛАСТИКА (от гальвано... и греч. plastike - ваяние), получение точных металлич. копий методом электро-литич. осаждения металла на металлич. или неметаллич. оригинале. См. Гальванотехника.

ГАЛЬВАНОСКОП (от гальвано... и греч. skopeo - смотрю), простейший стрелочный прибор для обнаружения тока в цепи и определения его направления, прообраз гальванометра.

ГАЛЬВАНОСТЕГИЯ (от гальвано... и греч. stego - покрываю), нанесение металлич. покрытий на поверхность металлич. изделий методом элекгролитич. осаждения. См. Гальванотехника.

ГАЛЬВАНОСТЕРЕОТИПИЯ (от гальвано... к стереотипия), способ изготовления копий форм высокой печати (стереотипов) методом гальванопластики. Т. впервые в мире (1839) была применена в Экспедиции заготовления гос. бумаг в Петербурге для размножения печатных форм. Она включает: матрицирование, собственно электролитич. осаждение металла (обычно меди) на матрицу для получения печатной формы (когда осаждаемый слой металла достигает нужной толщины - 0,25-0,30 мм, его отделяют от матрицы) и отделку. Г. даёт более точное воспроизведение оригинальной (исходной) формы, чем обычный литой стереотип. Износоустойчивость медных гальваностереотипов - до 200-250 тыс. оттисков (цинковых -25-30 тыс. оттисков), а после дополнит, покрытия их тонким слоем железа или никеля - до миллиона оттисков. Гальваностереотипы применяются преим. для печатания книг и журналов с большим количеством иллюстраций, а также многотиражных цветных репродукций. См. также Гальванотехника.

ГАЛЬВАНОТАКСИС (от гальвано... и греч. taxis - расположение, порядок), активное движение животных (инфузории и др.), растит, организмов (вольвокс и др.), а также микробов (кишечная палочка и др.) и клеточных органелл (пластиды), ориентированное электрич. током. Г. проявляется в водной среде или в почве. В зависимости от плотности тока, его напряжения, характера растворённых в воде веществ и реакции среды организмы могут направляться к аноду (положит. Г.) или к катоду (отрицат. Г.). Основой Г. считают хемотаксис на сдвиг концентрации катионов и анионов, возникающий под влиянием электрич. тока.

ГАЛЬВАНОТЕРАПИЯ, физиотерапевтич. метод, то же, что гальванизация.

ГАЛЬВАНОТЕХНИКА, область прикладной электрохимии, охватывающая процессы электролитич. осаждения металлов на поверхность металлич. и неметаллич. изделий. Г. включает: гальваностегию - получение на поверхности изделий прочно сцепленных с ней тонких металлич. покрытий и гальванопластику - получение легко отделяющихся, относительно толстых, точных копий с различных предметов, т. н. матриц. Открытие и тех-нич. разработка Г. принадлежат рус. учёному Б.С.Якоби, о чём он доложил 5 окт. 1838 на заседании Петерб. АН. Г. основана на явлении электрокристаллизации - осаждении на катоде (покрываемом изделии в гальваностегии или матрице в гальванопластике) положительно заряженных ионов металлов из водных растворов их соединений при пропускании через раствор постоянного электрич. тока (см. Электролиз). Количественно гальванотехнич. процессы регулируются по законам Фарадея (см. Фарадея явление) с учётом побочных процессов, к-рые сводятся чаще всего к выделению на поверхности покрываемых изделий наряду с металлом водорода; качественно - типом и составом электролита, режимом электролиза, т. е. плотностью тока, а также темп-рой и интенсивностью перемешивания. Различают электролиты на основе простых или комплексных соединений. Первые значительно проще, дешевле и при интенсивном перемешивании (чаще воздушном) допускают применение высоких плотностей тока, что ускоряет процесс электролиза. Так, напр., в гальваностегии при покрытии изделий простой конфигурации электролит на основе сернокислого цинка в присутствии коллоидных добавок допускает плотность тока до 300 а/м2, а при интенсивном воздушном перемешивании - до 30 ка/м2. В гальванопластике растворы простых солей, чаще сернокислых, обычно применяют без введения к.-л. органич. добавок, т. к. в толстых слоях эти добавки отрицательно сказываются на механич. свойствах полученных копий. Применяемая плотность тока ниже, чем в гальваностегии; в железных тальвано-пластич. ваннах она не превышает 10-30 а/м2, в то время как при железнении (гальваностегия) плотность тока достигает 2000-4000 а/м2. Гальванич. покрытия должны иметь мелкокристаллич. структуру и равномерную толщину на различных участках покрываемых изделий - выступах и углублениях. Это требование имеет в гальваностегии особенно важное значение при покрытии изделий сложной конфигурации. В этом случае используют электролиты на основе комплексных соединений или электролиты на основе простых солей с добавками поверхностно-активных веществ. Примером благоприятного влияния поверхностно-активных веществ на структуру покрытия может служить процесс осаждения олова из сернокислого оловянного электролита; без добавок поверхностно-активных веществ на поверхности покрываемых изделий выделяются изолиров. кристаллы, напоминающие ёлочную мишуру и не представляющие никакой ценности как покрытие. При введении в электролит фенола, крезола или др. соединения ароматич. ряда вместе с небольшим количеством коллоида (клей, желатина) образуется плотное, прочно сцепленное покрытие с вполне удовлетворит, структурой. Из щелочных оловянных электролитов, в к-рых олово находится в виде отрицат. комплексного иона (SnО3)4-, при темп-ре 65-70° С без к.-л. поверхностно-активных веществ получаются хорошо сцепленные мелкокристаллич. покрытия. Причина такого различия в поведении кислых и щелочных электролитов заключается в том, что в первых простые ионы двухвалентного олова в отсутствие поверхностно-активных веществ разряжаются без сколько-нибудь заметного торможения (поляризации), а в щелочных электролитах олово находится в виде комплексных ионов, разряжающихся со значит, торможением. Для цинкования изделий сложной формы применяют щёлочно-цианистые электролиты или др. комплексные соли цинка. Для кадмирования изделий применяются, как правило, цианистые электролиты. То же можно сказать про серебрение, золочение, латунирование.

Существенную роль в гальванотехнич. процессах играют аноды, осн. назначение к-рых - восполнять в электролите ионы, разряжающиеся на покрываемых изделиях. Аноды не должны содержать примесей, отрицательно влияющих на внешний вид и структуру покрытий. В нек-рых случаях анодам придают форму покрываемых изделий.Процессы хромирования, золочения, платинирования, родирования и др. протекают с нерастворимыми анодами из металла или сплава, устойчивого в данном электролите. Корректирование электролита в целях сохранения постоянства его состава осуществляется периодич. введением солей или др. соединений выделяющегося металла.

Все процессы как гальванопластики, так и гальваностегии протекают в гальва-нич. ваннах. Часто гальванич. ванной называют также состав находящегося в ней электролита. Материалом ванны в зависимости от её размеров и степени агрессивности электролита могут служить: керамика, эмалиров. чугун, сталь, футерованная свинцом или винипластом, органич. стекло и др. Ёмкость ванн колеблется от долей м3 (для золочения) до 10 м3 и более. Различают ванны: стационарные (покрываемые изделия в к-рых неподвижны), полуавтоматические (изделия вращаются или перемещаются по кругу или подковообразно) и агрегаты, в к-рых автоматически осуществляются загрузка, выгрузка и транспортировка изделийвдоль ряда ванн. Постоянный ток для электролиза получают гл. обр. от селеновых и кремниевых выпрямителей, плотность тока регулируется при помощи многоступенчатого трансформатора.

Гальваностегия применяется шире, чем гальванопластика; её цель придать готовым изделиям или полуфабрикатам определённые свойства: повышенную коррозионную стойкость (цинкованием, кадмированием, лужением, свинцеванием), износостойкость трущихся поверхностей (хромированием, железнением). Г. применяется для защитно-декоративной отделки поверхности (достигается никелированием, хромированием, покрытием драгоценными металлами). По сравнению с издавна применявшимися методами нанесения покрытий (напр., погружением в расплавленный металл) гальваностегич. метод имеет ряд преимуществ, особенно в тех случаях, когда можно ограничиться незначит. толщиной покрытия. Так, процесс покрытия оловом жести для пищ. тары электролитич. методом вытесняет старый, горячий метод; в США электролитически лужёная жесть составляет более 99% от всей продукции (1966). Расход олова при этом сокращён во много раз гл. обр. за счёт дифференциации толщины оловянного покрытия-от 0,2-0,3 до 1,5-2 мкм в зависимости от степени агрессивности пищ. сред. Все покрытия в гальваностегии должны быть прочно сцеплены с покрываемыми изделиями; для мн. видов покрытий это требование должно быть удовлетворено