загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

производится погружными центробежными насосами и последующей регазификацией жидкости на спец. установках. Изотермич. Г. х. создают в различных условиях, в т. ч. и в слабоустойчивых грунтах. Геометрич. ёмкость их достигает 80 тыс. м3. Изотермическое хранение метана обычно значительно дороже, чем хранение его в газообразном состоянии в водоносных пластах. Для хранения углеводородов в жидком состоянии применяются и наземные ёмкости-стальные резервуары с двойными стенками, между к-рыми помещён теплоизоляц. материал. Наземные изотермич. Г. х. относительно дороги и металлоёмки, поэтому они распространены мало.

Историч. справка. Первое подземное Г. х. сооружено в Канаде (1915) в истощённой залежи. Наибольшее развитие подземное хранение газа получило в США, где в 1968 насчитывалось 330 Г. х., общая ёмкость к-рых составляла 124 млрд. м3. Подземные Г. х. имеются также в ГДР, Польше, Чехословакии, ФРГ, Франции и др. странах. В СССР первым было сооружено Башкатовское Г. х. в Куйбышевской обл. (1958) на базе истощённой газовой залежи. В 1959 началось заполнение газом Калужского водоносного газохранилища, и с 1963 оно эксплуатируется. Его объём -400 млн. м3. Позднее в водоносном пласте было создано одно из крупнейших в мире - Щёлковское Г. х.; в нём хранится ок. 3,0 млрд. м3 газа, макс, давление - 11 Мн/м2 (110 кгс/см2). Рабочий расход газа по этому хранилищу достигает 15 млн. м3 в сутки.

В СССР газ в пром. масштабах отбирается из 5 Г. х., созданных в истощённых залежах, и из 7- в водоносных пластах; два Г. х. сооружены в отложениях каменной соли (1969). Два крупных подземных Г. х. созданы в истощённых газовых месторождениях Саратовской обл. В них производится закачка газа из мощной системы газопроводов Средняя Азия - Центр. Начаты работы по сооружению крупнейших Г. х. на базе истощённых месторождений Зап. Украины, Башкирии и Азербайджана. Значительно расширяются Калужское, Щёлковское (РСФСР) и Олишевское (УССР) хранилища; заполняются газом Краснопарти-занское (УССР), Инчукалнское (Латв. ССР) и др. хранилища. К 1975 общую ёмкость отечеств, подземных Г. х. намечено довести до 51 млрд. м3.

Лит.: Сидоренко М. В., Подземное хранение газа, М., 1965; Xеин А. Л., Гидродинамический расчёт подземных хранилищ газа, М., 1968; Хранение газа в горизонтальных и пологозалегающих водоногчых пластах, М., 1968. Е. В. Левыкин.

ГАЗОВОЗ, судно, перевозящее сжиженные газы (пропан, бутан, метан, аммиак и др.). Газы транспортируются в цистернах под давлением 1-1,8 Мн/м2 (10- 18 кгс/см2), сильно охлаждёнными либо при небольшом совместном охлаждении и сжатии. Грузоподъёмность совр. Г. от неск. десятков до 25-35 тыс. т, грузовместимость достигает 70 тыс. м3 и более. Цистерны Г. цилиндрические, сферические или прямоугольные, с тепловой изоляцией наружной или внутр. поверхности. Г. оборудуются системами разгрузки, отвода испаряющихся газов, подачи в цистерны инертного газа и др. Предусмотрены дистанц. контроль состояния груза (уровня, темп-ры, давления) и противопожарные средства.

ГАЗОВЫДЕЛЕНИЕ в горные выработки, выделение метана или др. природного газа из толщи полезного ископаемого и вмещающих пород в подземные горные выработки. Различают Г.: обыкновенное (происходит медленно, но непрерывно из трещин и пор в угле и породе по всей свободной поверхности; оно увеличивается при отделении угля от массива); суфлярное (местное выделение газа из трещин, газовый фонтан, действующий иногда продолжит, время); внезапное (местное бурное выделение больших количеств газа за небольшой промежуток времени, сопровождающееся разрушением поверхности забоя). Борьба с Г. успешно ведётся с помощью дегазации полезных ископаемых и вмещающих пород. См. также Газовый баланс.

ГАЗОВЫЕ КОНГРЕССЫ международные, проводятся с 1931 по инициативе Междунар. газового союза (МГС), основанного в 1930. К 1970 проведено одиннадцать Г. к., в пяти из к-рых принимали участие сов. специалисты (табл.). Местом проведения очередного Г. к. является страна, представитель к-рой избирается на 3-летний срок президентом МГС. Программа Г. к. разрабатывается оргкомитетом страны-организатора совместно с Советом МГС. На обсуждение конгресса представляются отчётные доклады комитетов МГС, а также индивидуальные доклады специалистов и учёных нац. газовых ассоциаций по вопросам добычи и производства газа, состояния науки и техники газового дела и др.

К 11-му Г. к., проходившему в Москве в июне 1970, впервые в междунар. практике была приурочена специализиров. Междунар. выставка газового оборудования, аппаратуры и приборов "Интергаз-70".

Международные газовые конгрессы с участием СССР
Конгресс

Место проведения

Год

Число стран-участниц

Число участников

Число докладов
7-й

Рим (Италия)

1958

18

750

46
8-й

Стокгольм (Швеция)

1961

22

980

48
9-й

Гаага (Нидерланды)

1964

31

1500

56
10-й

Гамбург (ФРГ)

1967

30

2250

77
11-й

Москва (СССР)

1970

47

3500

173

12-й Г. к. принято решение провести в 1973 в Канне (Франция), 13-й - в 1976 в Лондоне (Великобритания).

А. И. Сорокин.

ГАЗОВЫЕ ПРИБОРЫ, устройства, применяемые в жилых и обществ, зданиях для приготовления пищи, подогрева воды, отопления помещений и для создания искусств, холода. В качестве энергии в Г. п. используют тепло, выделяющееся при сгорании газа. Г. п., как правило, состоит из газовой горелки с подводящим газопроводом, теплообменного устройства и устройства для удаления продуктов сгорания. Газовые холодильники, кроме этих элементов, имеют холодильный аппарат и камеру. Г. п. разделяют на: бытовые - газовые кухонные плиты, водонагреватели и холодильники домашние; отопительные (см. Газовое отопление) и приборы предприятий обществ, питания - ресторанные плиты, духовые шкафы, пищеварочные котлы и кипятильники. Г. п. чаще всего имеют газовые горелки атм. типа. Газ под давлением до 500 мм вод. ст. выходит из сопла и эжек-тирует из атмосферы от 40 до 60% воздуха, необходимого для горения. Часть газа, обеспеченная "первичным" воздухом, сгорает во внутр. конусе пламени, образующемся на горелке. Он чётко очерчен и имеет зеленовато-голубой цвет. Остальная часть газа сгорает в наружном конусе, имеющем размытые контуры и бледно-голубой цвет. "Вторичный" воздух поступает к нему непосредственно из окружающей среды. Пламя горелки не должно иметь жёлтых кончиков, а внутр. конус не должен касаться поверхностей нагрева. В противном случае в продуктах сгорания может недопустимо увеличиться концентрация окиси углерода. Для устранения жёлтых кончиков с помощью регулировочного воздушного шибера увеличивают количество первичного воздуха.

Производительность горелок бытовых Г. п. изменяется от 0,02 до 5 м3/час (в расчёте на природный газ). На газопроводе перед Г. п. устанавливают отключающий пробочный кран. Г. п. оснащают автоматически действующими устройствами, прекращающими поступление газа при нарушениях работы Г. п. и регулирующими производительность горелок в зависимости от технологич. требований. Газовые горелки располагают открыто или в топочных камерах. При открытом расположении продукты сгорания поступают в помещение; при наличии топочных камер продукты сгорания отводятся в дымоходы.

Лит.: Стаскевич Н. Л., Справочное руководство по газоснабжению, Л., 1960; Газовое оборудование, приборы и арматура. (Справочное руководство), под ред. Н. И. Рябцева, М., 1963; Ионик А. А., Газоснабжение, М., 1965. А. А. Ионин.

ГАЗОВЫЕ ТУМАННОСТИ в астрономии, см. Туманности галактические.

ГАЗОВЫЙ АНАЛИЗ, анализ смесей газов с целью установления их качеств, и количеств, состава. Различают химич., физико-химич. и физич. методы Г. а. Химич. методы основаны на поглощении компонентов газовой смеси различными реагентами. Так, углекислый газ поглощают раствором щёлочи, кислород - щелочным раствором пирогаллола, ненасыщенные углеводороды - бромной водой. О количестве газа судят по уменьшению его объёма. Достоинство химич. методов Г. а.- простота конструкции приборов (газоанализаторов) и выполнения анализа. В физико-химич. методах Г. а. компоненты газовой смеси поглощают раствором соответствующего реагента и измеряют электрич. проводимость (см. Электрохимические методы анализа), оптич. плотность (см. Колориметрия) или др. физико-химич. характеристику раствора. Для определения состава смесей углеводородов широко применяют метод хроматографич. адсорбционного анализа (см. Хроматография). Физич. методы Г. а. основаны на измерении плотности, вязкости, темп-ры кипения, теплопроводности, поглощения и испускания света (см. Спектральный анализ), масс-спектров (см. Масс-спектроскопия) и др. физич. свойств газовой смеси, зависящих от её состава.

Существенные преимущества физико-химич. и физич. методов Г. а. перед химическими - быстрота выполнения, возможность автоматизации анализа - обусловили их широкое распространение в различных отраслях пром-сти. Г. а. применяют для установления состава природных и пром. газов, контроля технология, процессов в металлургич., хи-мич., нефтяной и газовой пром-сти, определения токсичных, легко воспламеняющихся или взрывоопасных газов в воздухе производств, помещений. О приборах для Г. а. см. Газоанализаторы; см. также лит. при этой статье.

В. В. Краснощекое.

ГАЗОВЫЙ БАЛАНС, количество выделяющегося в шахте газа и распределение газовыделения по источникам или по системе горных выработок. Различают Г. б. отд. выработки, выемочного участка и шахты или рудника в целом. Знание Г. б. является осн. предпосылкой для выбора методов управления газовыделением, системы вентиляции шахты и системы разработки полезного ископаемого. Один из методов установления Г. б.- газовая съёмка. Г. б. шахты определяется в основном природными условиями и горнотех-нич. показателями разработки. Г. б. шахты по источникам метана слагается из газовыделений: разрабатываемого угольного пласта (пластов); смежных газоносных угольных пластов; вмещающих пород. По структуре Г. б. метано-обильные шахты могут быть разделены на 2 группы: к 1-й относят шахты, разрабатывающие одиночный пласт, ко 2-й - свиту пластов. Для 1-й группы при выемке пласта с незначит. потерями характерно выделение в призабойном пространстве ев. 75%, а в выработанном - менее 25% общего дебита метана на выемочном участке. Отличительная особенность 2-й группы - выделение в призабойном пространстве 50-60% и менее, а в выработанном 40-50% и более общего дебита метана в пределах выемочного поля.

ГАЗОВЫЙ ДВИГАТЕЛЬ, двигатель внутр. сгорания, работающий на газообразном топливе: природном и нефтяном (попутном) газах, а также сжиженном газе (пропано-бутановая смесь), доменных, генераторных и др. газах. Преимущества Г. д. перед жидкотопливны-ми: значительно меньший износ осн. деталей благодаря более совершенному смесеобразованию и сгоранию; отсутствие в выхлопных газах вредных примесей; возможность применения более высокой степени сжатия, чем в двигателях, работающих на бензине. Эффективный кпд совр. стационарных Г. д. достигает 42%. Наиболее распространены Г. д., работающие по циклу дизеля (см. Газодизель). Г. д. мощностью до 12 тыс. квт (16 тыс. л. с.) используются в качестве энер-гетич. источника в различных отраслях народного хозяйства, особенно в газовой и нефтяной промышленности в качестве привода газоперекачивающих установок.

Г. д., работающие на сжиженном газе (газожидкостные двигате-л и), применяют в тех случаях, когда важно обеспечить безвредность и бездым-ность выхлопных газов, напр, при работе автомобилей, автопогрузчиков и тягачей в складских и подземных помещениях, для гор. автобусов и т. п.

Лит.:Генкин К. И., Газовые двигатели, М., 1962; Коллеров Л. К., Газовые двигатели поршневого типа, 2 изд., Л., 1968. К.И. Генкин.

ГАЗОВЫЙ КАРОТАЖ, метод выявления нефтяных и газовых залежей путём систематического определения газообразных и лёгких жидких углеводородов в буровом растворе, реже в керне.

При пробуривании скважин через неф-тегазоносный пласт углеводороды попадают в буровой раствор, к-рый и выносит их на поверхность. Производится эпизо-дич. или непрерывная дегазация бурового раствора, а полученный газ анализируется. Результаты анализов наносятся на диаграммы, показывающие изменения состава и содержания углеводородов по разрезу скважины. По этим диаграммам определяется глубина нахождения нефтеносного или газоносного пласта.

Для проведения работ применяются газокаротажные станции - автомашины, в к-рых располагаются различные приборы, позволяющие следить за глубиной забоя скважины, скоростью её проходки и циркуляцией бурового раствора, анализировать газ, поступающий из дегазатора, определять присутствие нефти в буровом растворе и др. Результаты анализов газа автоматически регистрируются с помощью самописца. Учитывая скорость проходки скважины и её глубину, вносятся поправки, позволяющие более точно определить местоположение залежей нефти и газа по разрезу скважины.

Г. к. проводится также и при остановке бурения скважины. Буровой раствор стоит нек-рое время в скважине и обогащается углеводородами на тех участках раствора, к-рые находятся против нефтеносных и газоносных пластов. Затем начинается обычная циркуляция бурового раствора (как при бурении скважины) и проводится Г. к., позволяющий определить интервалы раствора, обогащённые углеводородами. Вводя поправки, учитывающие глубину скважины и скорость циркуляции бурового раствора, определяют местоположение нефтяных и газовых залежей по разрезу скважины.

Проводится также Г. к. по кернам, к-рые подвергаются дегазации, а извлечённый газ анализируется. Результаты анализов позволяют делать выводы о местоположении нефтегазоносных пластов. Метод Г. к. используется также для изучения газоносности угольных пластов. В перспективе предусматривается совместное применение Г. к. с электрокаротажем.

Г. к. впервые был разработан в СССР (1933).

Лит.: Соколов В. А., Юровский Ю. М., Теория и практика газового каротажа, М., 1961; Юровский Ю. М., Разрешающие способности газового каротажа, М., 1964. Ю. М. Юровский.

ГАЗОВЫЙ КОНДЕНСАТОР, конденсатор с газообразным диэлектриком; к Г. к. относятся газонаполненные, воздушные и вакуумные конденсаторы. Применяются в электрич. цепях, приборах и устройствах с напряжением от долей в до сотен к в, при частотах до сотен Мгц (см. Конденсатор электрический).

ГАЗОВЫЙ ЛАЗЕР, лазер с газообразной активной средой. Трубка с активным газом помещается в оптический резонатор, состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным.

Испущенная в к.-л. месте трубки световая волна при распространении её через газ усиливается за счёт актов вынужденного испускания, порождающих лавину фотонов. Дойдя до полупрозрачного зеркала, волна частично проходит через него. Эта часть световой энергии излучается Г. л. вовне. Другая же часть отражается от зеркала и даёт начало новой лавине фотонов. Все фотоны идентичны по частоте, фазе и направлений распространения. Благодаря этому излучение лазера может обладать чрезвычайно большой монохроматичностью, мощностью и резкой направленностью (см. Лазер, Квантовая электроника).

Первый Г. л. был создан в США в 1960 А. Джаваном. Существующие Г. л. работают в очень широком диапазоне длин волн - от ультрафиолетового излучения до далёкого инфракрасного излучения-как в импульсном, так и в непрерывном режиме. В табл. приведены нек-рые данные о наиболее распространённых Г. л. непрерывного действия.
Лазер

Длина волны, мкм

Мощность , вт
Кадмиевый

0,3250

несколько тысячных долей
Кадмиевый

0,4416

десятые доли
Аргоновый

0,4880

единицы
Аргоновый

0,5145

десятки
Криптоновый

0,5682

единицы
Гелий-неоновый

0,6328

десятые доли
Гелий-неоновый

1,1523

сотые доли
Ксеноновый

2,0261

сотые доли
Гелий -неоновый

3,3912

сотые доли
СО-лазер

5,6-5,9

сотни
СО2-лазер

9,4-10,6

дес. тысяч
Лазер на молекулах HCN

337

тысячные доли

Из Г. л., работающих только в импульсном режиме, наибольший интерес представляют лазеры ультрафиолетового диапазона на ионах Ne ([0601-5.jpg] = 0,2358 мкм и [0601-6.jpg]= 0,3328 мкм) и на молекулах N2 ([0601-7.jpg]=0,3371 мкм). Азотный лазер обладает большой импульсной мощностью.

В излучении Г. л. наиболее отчётливо проявляются характерные свойства лазерного излучения - высокая направленность и монохроматичность. Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения (см. ниже) и переход к более высоким давлениям газа могут резко увеличить мощность Г. л. С помощью Г. л. возможно дальнейшее освоение далёкого инфракрасного диапазона, диапазонов ультрафиолетового и рентгеновского излучений. Открываются новые области применения Г. л., напр, в космич. исследованиях.

Особенности газов как лазерных материалов. По сравнению с твёрдыми телами и жидкостями газы обладают существенно меньшей плотностью и более высокой однородностью. Поэтому световой луч в газе практически не искажается, не рассеивается и не испытывает потерь энергии. В таких лазерах сравнительно просто возбудить только один тип электромагнитных волн (одну моду). В результате направленность лазерного излучения резко увеличивается, достигая предела, обусловленного дифракцией света. Расходимость светового луча Г. л. в области видимого света составляет 10-5 -10-4рад, а в инфракрасной ббласти 10-4-10-3рад.

В отличие от твёрдых тел и жидкостей, составляющие газ частицы (атомы, молекулы или ионы) взаимодействуют друг с другом только при соударениях в процессе теплового движения. Это взаимодействие слабо влияет на расположение уровней энергии частиц. Поэтому энер-гетич. спектр гача соответствует уровням энергии отд. частиц. Спектральные линии, соответствующие переходам частиц с одного уровн!' энергии на другой, в газе уширены незнччительно. Узость спектральных линий в газе приводит к тому, что в линию попадает мало мод резонатора.

Т. к. газ практически не влияет на распространение излучения в резонаторе, стабильность частоты излучения Г. л. зависит гл. обр. от неподвижности зеркал и всей конструкции резонатора. Это приводит к чрезвычайно высокой стабильности частоты излучения Г. л. Частота со излучения Г. л. воспроизводится с точностью до 10~и, а относит, стабильность частоты.
[0601-8.jpg]

Малая плотность газов препятствует получению высокой концентрации возбуждённых частиц. Поэтому плотность генерируемой энергии у Г. л. существенно ниже, чем у твердотельных лазеров.

Создание активной газовой среды в газоразрядных лазерах. Активной средой Г. л. является совокупность возбуждённых частиц газа (атомов, молекул, ионов), обладающих инверсией населённостей. Это означает, что число частиц, "населяющих" более высокие уровни энергии, больше, чем число частиц, находящихся на более низких энергетич. уровнях. В обычных условиях теп гового равновесия имеет место обратная картина - населённость низших уровней больше, чем более высоких (см. Больцмана статистика). В случае инверсии населённостей акты вынужденного испускания фотонов с энергией [0601-9.jpg]сопровождающие вынужденный переход частиц с верхнего уровня [0601-10.jpg]на нижний преобладают над актами поглощения [0601-11.jpg]этих фотонов. В результате этого активный газ может генерировать электромагнитное излучение частоты [0601-12.jpg](или с длиной волны[0601-13.jpg]

Одна из особенностей газа (или смеси газов) - многообразие физич. процессов, приводящих к его возбуждению и созданию в нём инверсии населённостей. Возбуждение активной среды излучением газоразрядных ламп, нашедшее широкое применение в твердотельных и жидкостных лазерах, мало эффективно для получения инверсии населённостей в Г. л., т. к. газы обладают узкими линиями поглощения, а лампы излучают свет в широком интервале длин волн. В результате может быть использована только ничтожная часть мощности источника накачки (кпд мал). В подавляющем большинстве Г. л. инверсия населённостей создаётся в электрич. разряде (газоразрядные лазеры). Электроны, образующиеся в разряде, при столкновениях с частицами газа (электронный удар) возбуждают их, переводя на более высокие уровни энергии. Если время жизни частиц на верхнем уровне энергии больше, чем на нижнем, то в газе создаётся устойчивая инверсия населённостей. Возбуждение атомов и молекул элактронным ударом является наиболее разработанным методом получения инверсии населённостей в газах. Метод электронного удара применим для возбуждения Г. л. как в непрерывном, так и в импульсном режимах. Возбуждение электронным ударом удачно сочетается с др. механизмом возбуждения - передачей энергии, необходимой для возбуждения частиц одного сорта от частиц др. сорта при неупругих соударениях (резонансная передача возбуждения). Такая передача весьма эффективна при совпадении уровней энергии у частиц разного сорта (рис. 1).

[0601-14.jpg]

Рис. 1. Схема уровней энергии вспомогательных и рабочих частиц газоразрядного лазера.

В этих случаях создание активной среды происходит в два этапа: сначала электроны возбуждают частицы вспомогат. газа, затем эти частицы в процессе неупругих соударений с частицами рабоче-го газа передают им энергию. В результате этого населяется верхний лазерный уровень. Чтобы хорошо накапливалась энергия, верхний уровень энергии вспомогат. газа должен обладать большим собств. временем жизни. Именно по такой схеме осуществляется инверсия населённостей в гелий-неоновом лазере.

Гелий-неоновый лазер (А. Джаван, США, 1960). В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона Ne. Атомы гелия Не служат для передачи энергии возбуждения. В электрич. разряде часть атомов Ne переходит с осн. уровня[0601-15.jpg] на возбуждённый верхний уровень энергии [0601-16.jpg]Но в чистом Ne время жизни на уровне [0601-17.jpg]мало, атомы быстро "соскакивают" с него на уровни [0601-18.jpg]и [0601-19.jpg]что препятствует созданию достаточно высокой инверсии населённостей для пары уровней [0601-20.jpg]и [0601-21.jpg]Примесь Не существенно меняет ситуацию. Первый возбуждённый уровень Не совпадает с верхним уровнем неона. Поэтому при столкновении [0601-22.jpg]возбуждённых электронным ударом атомов Не с невозбуждёнными атомами Ne (с энергией [0601-23.jpg]) происходит передача возбуждения, в результате которой атомы Ne будут возбуждены, а атомы Не вернутся в основное состояние. При достаточно большом количестве атомов Не можно добиться преимуществ, заселения уровня [0601-24.jpg]неона. Этому же способствует опустошение уровня [0601-25.jpg]неона, происходящее при соударениях атомов со стенками газоразрядной трубки. Для эффективного опустошения уровня [0601-26.jpg]диаметр трубки должен быть достаточно мал. Однако малый диаметр трубки ограничивает количество Ne и, следовательно, мощность генерации. Оптимальным, с точки зрения макс, мощности генерации, является диаметр ок. 7 мм. Т. о., в результате спец. подбора количеств (парциальных давлений) Ne и Не и при правильном выборе диаметра газоразрядной трубки устанавливается стационарная инверсия населённостей уровней энергии [0601-27.jpg]неона.

Уровни неона [0601-28.jpg]обладают сложной структурой, т. е. состоят из множества подуровней. В результате гелий-неоновый лазер может работать на 30 длинах волн в области видимого света и инфракрасного излучения. Зеркала оптич. резонатора имеют многослойные диэлект-рич. покрытия. Это позволяет создать необходимый коэфф. отражения для заданной длины волны и возбудить тем самым в Г. л. генерацию на требуемой частоте.

Осн. конструктивный элемент гелий-неонового лазера - газоразрядная трубка (обычно из кварца). Давление газа в разряде 1 мм рт. ст., причём количество Не обычно в 10 раз больше, чем Ne. На рис. 2 приведена конструкция гелий-неонового лазера, разработанная для применения в открытом космосе. Разрядная трубка с внутр. диаметром 1,5 мм из корундовой керамики помещена между полупрозрачным зеркалом и отражающей призмой, смонтированными на жёсткой бериллиевой трубе (цилиндре). Разряд осуществляется на постоянном токе (8 ма, 1000 в) в двух секциях (каждая длиной 127 мм) с общим центр, катодом. Холодный оксиднотанталовый катод (диаметром 48 мм и длиной 51 мм) разделён на 2 половины диэлектрич. прокладкой, обеспечивающей более однородное распределение тока по поверхности катода. Вакуумные сильфоны из нержавеющей стали, являющиеся анодами, образуют подвижное соединение каждой трубки с держателями зеркала и призмы. Кожух завершён с левого конца выходным окном. Лазер рассчитан на работу в космосе в течение 10 000 ч.

[0601-29.jpg]

Рис. 2. Поперечное сечение конструкции гелий-неонового лазера для космических исследований.



Мощность излучения гелий-неоновых лазеров может достигать десятых долей вт, кпд не превышает 0,01%, но высокая монохроматичность и направленность излучения, простота в обращении и надёжность конструкции обусловили их широкое применение. Красный гелий-неоновый лазер [0601-30.jpg]используется при юстировочных и нивелировочных работах (шахтные работы, кораблестроение, строительство больших сооружений). Гелий-неоновый лазер широко применяется в оптич. связи и локации, в голографии и в квантовых гироскопах.

Лазер на углекислом газе (К. Пател, США, ф. Легей, Н. Легей-Соммер, Франция, 1964). Молекулы, в отличие от атомов, имеют не только электронные, но и т. н. колебательные уровни энергии, обусловленные колебаниями атомов, составляющих молекулу, относительно положений равновесия (см. Молекула). Переходы между колебат. уровнями энергии соответствуют инфракрасному излучению. Лазеры, в к-рых используются эти переходы, наз. молекулярными. Из числа молекулярных лазеров особенно интересен лазер, в к-ром используются колебат. уровни молекулы СО2, между к-рыми создаётся инверсия на-селённостей (СО2-лазер).

В газоразрядных СО2 -лазерах инверсия населённостей также достигается возбуждением молекул электронным ударом и резонансной передачей возбуждения. Для передачи энергии возбуждения служат молекулы азота N2, возбуждаемые, в свою очередь, электронным ударом. Обычно в условиях тлеющего разряда ок. 90% молекул азота переходит в возбуждённое состояние, время жизни к-рого очень велико. Молекулярный азот хорошо аккумулирует энергию возбуждения и легко передаёт её молекулам ССЬ в процессе неупругих соударений. Высокая инверсия населённостей достигается при добавлении в разрядную смесь Не, к-рый, во-первых, облегчает условия возникновения разряда и, во-вторых, в силу своей высокой теплопроводности охлаждает разряд и способствует опустошению нижних лазерных уровней молекулы СО2. Эффективное возбуждение СО2-ла-зеров может быть достигнуто химич. или газодинамич. методами.

Тонкая структура колебательных уровней молекулы СО2 позволяет изменять длину волны (перестраивать лазер) скачками через 30-50 Ггц в интервале длин волн от 9,4 до 10,6 мкм.

CCh-лазеры обладают высокой мощностью (наибольшая мощность лазерного излучения в непрерывном режиме) и высоким кпд. При возбуждении молекул СО2 электронным ударом и длине газоразрядной трубы 200 м СО2-лазер излучает мощность 9 квт. Существуют компактные конструкции с выходной мощностью в 1 кет. Кроме высокой выходной мощности, СО2-лазеры обладают большим кпд, достигающим 15-20% (возможно достижение кпд 40%). СО2-ла-зеры могут принципиально эффективно работать и в импульсном режиме. Перечисленные особенности СО2-лазеров обусловливают многообразие их применения: технологич. процессы (резание, сварка), локация и связь (атмосфера прозрачна для волн с[0601-31.jpg]=10 мкм), фи-зич. исследования, связанные с получением и изучением высокотемпературной плазмы (высокая мощность излучения), исследование материалов и т. д.

Газоразрядные трубки СО2-лазеров имеют диаметр от 2 до 10 см, длина их может быть очень большой (рис. 3). Обычно применяются секционные (модульные) конструкции с током разряда до неск. а при напряжениях до 10 кв на секцию. Т. к. мощность СО2-лазеров непрерывного действия достигает очень высоких значений, серьёзной проблемой является изготовление достаточно долговечных зеркал хорошего оптич. качества. Применяются покрытые золотом сапфировые или металлич. зеркала. Вывод излучения зачастую производится через отверстия в зеркалах. В качестве полупрозрачных выходных зеркал применяются пластины из высокоомного германия, арсенида галлия и т. п.

В электрич. разряде СО2-лазеров имеют место нежелательные эффекты, разрушающие инверсию населённостей,- разогрев газа и диссоциация его молекул. Для их устранения газовая смесь непрерывно "прогоняется" через разрядные трубы лазеров. Так происходит обновление активной среды. Для получения больших мощностей (неск. квт) в непрерывном режиме газ прогоняют через трубку с большой скоростью и разряд происходит в сверхзвуковом потоке. Для того чтобы избежать потерь дорогостоящего Не, газовая смесь циркулирует по замкнутому контуру. Возбуждение электронным ударом производится либо в резонаторе, либо непосредственно перед поступлением смеси в резонатор. В лучших приборах практически все молекулы СО2, влетающие в резонатор, уже возбуждены и за время пролёта через резонатор отдают энергию возбуждения в виде кванта излучения.

Ионные лазеры (У. Бриджес, США, 1964). В ионных лазерах инверсия населённостей создаётся между электронными уровнями энергии ионизированных атомов инертных газов и паров металлов. Инверсия населённостей достигается выбором пары уровней, для к-рой нижний лазерный уревень обладает меньшим, а верхний - большим временами жизни. Необходимость создания большого количества ионов приводит к тому, что плотность тока газового разряда в ионных лазерах достигает десятков тысяч а/см2. Электрич. разряд осуществляется в тонких капиллярах диаметром до 5 мм. При больших плотностях тока газ увлекается током от анода к катоду. Для компенсации этого эффекта анодная и катодная области разрядной трубки соединяются дополнит, длинной трубкой малого диаметра, обеспечивающей обратное движение газа.

Ввиду высокой плотности тока для изготовления газоразрядных трубок ионных лазеров применяются металлокерамич. конструкции или трубки из берил-лиевой керамики, обладающие высокой теплопроводностью. Кпд ионных лазеров не превышает 0,01%. В области видимого света сравнительно высокой мощностью в непрерывном режиме обладают аргоновые лазеры. Аргоновый ионный лазер генерирует излучение с[0601-32.jpg] =0,5145 мкм (зелёный луч) мощностью до неск. десятков вт. Он применяется в технологии обработки твёрдых материалов, при физич. исследованиях, в оптич. линиях связи, при оптич. локации искусств, спутников Земли.

Ионный лазер на смеси ионов аргона и криптона обладает способностью перестраиваться по длине волны (сменой зеркал) во всём видимом диапазоне. Он излучает мощность до 0,1 вт на волнах 0,4880 мкм (синий), 0,5145 мкм (зелёный), 0,5682 мкм (жёлтый) и 0,6471 мкм (красный луч).

Весьма перспективен лазер на парах кадмия, работающий в непрерывном режиме в синей (0,4416 мкм) и ультрафиолетовой (0,3250 мкм) областях спектра и обладающий высокой монохроматичностью. Пары Cd образуются в испарителе, расположенном около анода (рис. 4). Они сильно разбавлены Не. Равномерное распределение Cd в газоразрядной трубке и подбор его концентрации достигаются увлечением паров Cd ионами Не от анода к катоду. Плотность паров Cd определяется темп-рой подогревателя. В охладителе около катода Cd конденсируется. Трубка диаметром 2,5 мм и длиной 140 см при давлении Не 4,5 мм рт. ст., темп-ре подогревателя 250 °С, токе разряда 0,12 а и напряжении 4 кв позволяет получить мощность 0,1 вт в синей и 0,004 вт в ультрафиолетовой областях спектра. Кадмиевый лазер применяется в оптич. исследованиях (см. Нелинейная оптика), океанографии, а также фотобиологии и фотохимии.

[0601-33.jpg]

Рис. 4. Схематическое изображение кадмиевого лазера: 1 - зеркала: 2 - окна для выхода излучения; 3 - катод (слева) и анод (справа): 4 - испаритель кадмия; 5 - конденсатор паров кадмия; 6 - газоразрядная трубка.



Газодинамические лазеры (В. К. Конюхов и А. М. Прохоров, СССР, 1966). Характерной особенностью газов является возможность создания быстрых потоков газовых масс. Если предварительно сильно нагретый газ внезапно расширяется, напр, при протекании со сверхзвуковой скоростью через сопло, то его темп-ра резко падает. При внезапном снижении темп-ры молекулярного газа колебательные уровни энергии молекул могут оказаться возбуждёнными (газодинамическое возбуждение). Существует СО2-лазер с газодинамич. возбуждением. При газодинамич. возбуждении тепловая энергия непосредственно преобразуется в энергию электромагнитного излучения. Мощность излучения газодинамич. лазеров, работающих в непрерывном режиме, достигает 100 квт.

Химические лазеры. Инверсия населённостей в нек-рых газах может быть создана в результате химич. реакций, при к-рых образуются возбуждённые атомы, радикалы или молекулы. Газовая среда удобна для химич. возбуждения, т. к. реагирующие вещества легко и быстро перемешиваются и легко транспортируются. Химич. лазеры интересны тем, что в них происходит прямое преобразование химич. энергии в энергию электромагнитного излучения. Примером химич. возбуждения может служить возбуждение при цепной реакции соединения фтора с дейтерием, в результате к-рой получается возбуждённый дейтерид фтора DF, передающий в дальнейшем энергию своего возбуждения молекулам СO2. Удаление продуктов реакции обеспечивает непрерывный характер работы этих лазеров.

К химич. лазерам примыкают Г. л., в к-рых инверсия населённостей достигается с помощью реакций фотодиссоциа-ции (распада молекул под действием света). Это быстропротекающие реакции, в ходе к-рых возникают возбуждённые радикалы или атомы. Существует лазер на фотодиссоциации молекулы СF3I (С. Г. Раутиан, И. И. Собельман, СССР). Диссоциация происходит под действием излучения ксеноновой лампы-вспышки. Осколком реакции является возбуждённый атомарный ион I+.

Лит.: Квантовая электроника, М., 1969; Беннет В., Газовые лазеры, пер. с англ., М., 1964; Блум А., Газовые лазеры, "Тр. Ин-та инженеров по электронике и радиоэлектронике", 1966, т. 54, № 10; Пател К., Мощные лазеры на двуокиси углерода, "Успехи физических наук", 1969, т. 97, в. 4; Аллен Л., Джонс Д., Основы физики газовых лазеров, пер. с англ., М., 1970. Н. В. Карлов.

ГАЗОВЫЙ РАЗРЯД, совокупность электрич., оптич. и тепловых явлений, сопровождающих прохождение электрич. тока через газ. См. Электрический разряд в газах.

ГАЗОВЫЙ РЕЖИМ шахты, распорядок, вводимый на шахтах (рудниках), опасных по выделению метана или водорода. Если шахта опасна не только по газу, но и по взрывчатой пыли, то вводится т. н. пыле-газовыq режим.

К опасным по газу относятся шахты, в к-рых хотя бы один раз и на одном пласте было обнаружено присутствие метана. В зависимости от газообильности шахты разделяются на 4 категории (табл.).

Г. р. предусматривает выполнение ор-ганизационно-технич. мероприятий для предупреждения скопления газа до опасных пределов и появления источников воспламенения газа. Это достигается осуществлением интенсивной вентиляции выработок и дегазации полезных ископаемых и вмещающих пород; применением таких способов работ и механизмов, при которых скопление газа минимально; регулярным контролем содержания газа в воздухе горных выработок при помощи газоопределителей и аппаратуры автоматического контроля и аварийного оповещения. Вторая группа мероприятий состоит в том, чтобы не допускать в шахте открытого пламени, раскалённых предметов и искр (достигается применением предохранит, взрывчатых веществ, электрооборудования в спец. исполнении, соблюдением предохранительных мер при ведении горных работ и др.).

При разработке пластов, опасных по внезапным выбросам и суфлярным выделениям, при наличии слоевых скоплений метана Г. р. включает ряд дополнит, мероприятий. См. также Пылевой режим.

С. Я. Хейфиц.

ГАЗОВЫЙ РУЛЬ, устройство для управления самолётами, ракетами, космич. кораблями и др. летательными аппаратами на тех участках полёта, где воздушные рули неэффективны. По конструкции Г. р. разнообразны: от пластин, изменяющих направление тяги газового потока, до сложного соплового аппарата. В самолётах вертикального взлёта и посадки (рис.) Г. р. применяются на режимах взлёта и посадки (до выхода на горизонтальный полёт), в ракетах и космич. кораблях - на начальных участках полёта и для управления в безвоздушном пространстве.

[0601-34.jpg]

Самолёт вертикального взлёта и посадки (а), кабина космического корабля (б), ракета (в); 1- газовый руль; 2 - генератор газа.



ГАЗОВЫЙ СЕПАРАТОР, аппарат для очистки продукции газовых и газокон-денсатных скважин от капельной влаги и углеводородного конденсата, твёрдых

Категории шахт
Показатели

Категории по газу

Сверхкате горные
I

II

III


Угольные шахты


Количество метана, выделяющегося в сутки на 1 т среднесуточной добычи , м3

5

от 5 до 10

от 10 до 15

Св. 15 или шахты, разрабатывающие пласты, опасные по выбросам угля и газа н суфлярным выделениям газа


Рудные и нерудные шахты


Количество горючих газов (метана, водорода), выделяющихся в сутки на 1 м3 среднесуточной добычи, м3

до 7

от 7 до 14

от 14 до 21

21 н выше или шахты, разрабатывающие пласты, опасные по выбросам угля и газа и суфлярным выделениям газа

Примечание. При делении шахт на категории по газообильностп 1 м3 водорода принимают равным 2 м2 метана.

частиц и др. примесей. Примеси затрудняют транспортировку газа и являются причиной коррозии трубопроводов, закупорки (частичной или полной) скважин, шлейфов и промыслового оборудования вследствие образования пробок гидратов или льда (см. Гидратообразование). Форма Г. с. цилиндрическая (горизонтальные и вертикальные).

Г. с., как правило, имеют сепарацион-ные секции: осн. сепарационную (для отделения большей части жидкости из газового потока): осадительную, в к-рой примеси отделяются под действием сил гравитации: окончательной очистки газа (от мельчайших капель жидкости): для сбора и предварительного отстоя жидкости. Г. с. разделяются по типу осн. сепарационного устройства на гравитационные, циклонные (центробежные) и насадочные; по положению сборника жидкости - с выносным сборником и со сборником, находящимся в объёме Г. с. Принцип действия гравитационных Г. с. основан на снижении скорости газа в них до такой величины, при к-рой примеси оседают под действием силы тяжести и периодически сбрасываются по мере накопления. Гравитационные Г. с. просты по конструкции и изготовлению, надёжны в работе, однако очень громоздки, металлоёмки, и эффективность их составляет 70-85% . В циклонных Г. с. сепарация примесей происходит под действием центробежных сил. При равной с гравитационными эффективности циклонные Г. с. обладают большей пропускной способностью, менее металлоёмки и имеют меньшие габаритные размеры. Наиболее эффективными являются н а-садочные Г. с., в к-рых отделение жидкости осуществляется в основном под действием сил инерции.

Всё большее применение на отечеств, газовых промыслах получают жалюзийные Г. с., позволяющие отделить жидкость в виде плёнки, что повышает эффективность жалюзийных сепараторов до 95-97%. См. также Газов очистка.

Лит.: Разработка п эксплуатация нефтяных и газовых месторождений, 2 изд.. М., 1965. Э. Б. Бухгалтер.

ГАЗОВЫЙ ТЕРМОМЕТР, прибор для измерения темп-ры, действие к-рого основано на зависимо,-.ти давления или объёма идеального газа от темп-ры. Чаще всего применяют Г. т. постоянного объёма (рис.), к-рый представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение темп-ры газа в баллоне пропорционально изменению давления. Г. т. измеряют темп-ры в интервале от ~2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой темп-ры 3*10-3- 2*10-2 град. Г. т. такой высокой точности-сложное устройство; при измерении им темп-ры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением темп-ры; наличие в газе примесей, особенно конденсирующихся; сорбцию и десорбцию газа стенками баллона; диффузию газа сквозь стенки, а также распределение темп-ры вдоль соединит, трубки.

[0601-35.jpg]



Температурная шкала Г. т. совпадает с термодинамич. температурной шкалой, и Г. т. применяется в качестве первичного термометрич. прибора (см. Температурные шкалы). При помощи Г. т. определены темп-ры постоянных точек (реперных точек) Международной практической температурной шкалы.

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954.

ГАЗОВЫЙ ФАКТОР, отношение полученного из месторождения через скважину количества газа (в м3), приведённого к атм. давлению и темп-ре 20°С, к количеству добытой за то же время нефти (в т или м3) при том же давлении и темп-ре. Г. ф. зависит от соотношения газа и нефти в пластР, от физич. и гео-логич. свойств пласта, от характера и темпа эксплуатации, от давления в пласте и т. д. Г. ф. является важнейшим показателем расхода пластовой энергии и определения газовых ресурсов нефтяного месторождения.

ГАЗОВЫЙ ЯКОРЬ, устройство для отделения свободного газа, содержащегося в перекачиваемой жидкости, с целью повышения кпд насоса. Широкое применение Г. я. нашёл в нефтяной пром-сти при глубиннонасосной эксплуатации месторождений. Существует 7 осн. типов Г. я., действие к-рых основано на повороте потока, разделении потока на части, объединении пузырей газа, перепаде давления и т. д.

Лит.: Адонин А. Н., Процессы глубиннонасосной нефтедобычи, М., 1964.

ГАЗОГЕНЕРАТОР, аппарат для термич. переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы наз. генераторными. Горение твёрдого топлива в Г. в отличие от любой топки осуществляется в большом слое и характеризуется поступлением количества воздуха, недостаточного для полного сжигания топлива (напр., при работе на паровоздушном дутье в Г. подаётся 33-35% воздуха от теоретически необходимого). Образующиеся в Г. газы содержат продукты полного горения топлива (углекислый газ, вода) и продукты их восстановления, неполного горения и пирогенетич. разложения топлива (угарный газ, водород, метан, углерод). В генераторные газы переходит также азот воздуха. Процесс, происходящий в Г , наз. газификацией топлива.

Г. обычно представляет собой шахту, внутр. стенки к-рой выложены огнеупорным материалом. Сверху этой шахты загружается топливо, а снизу подаётся дутьё. Слой топлива поддерживается колосниковой решёткой. Процессы образования газов в слое топлива Г. показаны на рис. 1. Подаваемое в Г. дутьё вначале проходит через зону золы и шлака 0, где оно немного подогревается, а далее поступает в раскалённый слой топлива (окислит, зона, или зона горения I), где кислород дутья вступает в реакцию с горючими элементами топлива. Образовавшиеся продукты горения, поднимаясь вверх по Г. и встречаясь с раскалённым топливом (зона газификации II), восстанавливаются до окиси углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термич. разложение топлива (зона разложения топлива III) и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуются вначале полукокс,а затем и кокс, на поверхности к-рых при их опускании вниз происходит восстановление продуктов горения (зона II). При опускании ещё ниже происходит горение кокса (зона I). В верхней части Г. происходит сушка топлива теплом поднимающихся газов и паров.

В зависимости от того, в каком виде подаётся в Г. кислород дутья, состав генераторных газов изменяется. При подаче в Г. одного возд. дутья получается возд. газ, теплота горения к-рого в зависимости от перерабатываемого топлива колеблется от 3,8 до 4,5 Мдж/м3 (900 - 1080 ккал/м3). Применяя дутьё, обогащённое кислородом, получают т. н. па-рокислородный газ (содержащий меньшее количество азота, чем возд. газ), теплота горения к-рого может быть доведена до 5-8,8 Мдж/м3 (1200-2100 ккал/м3).

При работе Г. на воздухе с умеренной добавкой к нему водяных паров получается смешанный газ, теплота сгорания к-рого (в зависимости от исходного топлива) колеблется от 5 до 6,7 Мдж/м3 (1200-1600 ккал/м3). И, наконец, при подаче в раскалённый слой топлива Г. водяного пара получают водяной газ с теплотой сгорания от 10 до 13,4 Мдж/м3 (2400-3200 ккал/м3).

Несмотря на то, что идея Г. была выдвинута в конце 30-х гг. 19 в. в Германии (Бищофом в 1839 и Эбельманом в 1840), их пром. применение началось после того, как Ф. Сименсом (1861) был предложен регенеративный принцип отопления заводских печей, позволивший эффективно применять генераторный газ. Изобретателями первого пром. Г. были братья Ф. и В. Сименс. Их конструкция Г. получила повсеместное распространение и просуществовала в течение 40-50 лет. Только в нач. 20 в. появились более совершенные конструкции.

В зависимости от вида перерабатываемого твёрдого топлива различают типы Г.: для тощего топлива - с незначит. выходом летучих веществ (кокс, антрацит, тощие угли), для битуминозного топлива - со значит, выходом летучих веществ (газовые и бурые угли), для древесного и торфяного топлива и для отбросов минерального топлива (коксовая и угольная мелочь, остатки обогатит, производств). Различают Г. с жидким и твёрдым шлакоудалением. Битуминозные топлива обычно газифицируются в Г. с вращающимся водяным поддоном, а древесина и торф - в Г. большого внутр. объёма, т. к. перерабатываемое топливо имеет незначит. плотность. Мелкое топливо перерабатывается в Г. высокого давления н во взвешенном или кипящем слое. По назначению Г. можно разделить на стационарные и транспортные, а по месту подвода воздуха и отбора газа на Г. прямого, обращённого и горизонтального процесса. В Г. прямого процесса (рис. 2) движение носителя кислорода и образующихся газов происходит снизу вверх. В Г. с обращённым процессом (рис. 3) носитель кислорода и образующийся газ движутся сверху вниз. Для обеспечения обращённого потока средняя часть таких Г. снабжается фурмами, через к-рые вводится дутьё. Т. к. отсасывание образовавшихся газов осуществляется снизу Г., то зона горения I (окислительная)находится сразу же под фурмами, ниже этой зоны следует зона восстановления II, над зоной горения I располагается зона III - пирогенетич. разложения топлива, происходящего за счёт тепла раскалённого горящего кокса зоны I. Сушка самоговерхнего слоя топлива в Г. происходит за счёт передачи тепла от зоны III. В Г. с горизонтальным процессом носитель кислорода и образующийся газ движутся в горизонтальном направлении.

При эксплуатации Г. соблюдается режим давления и темп-ры, величина к-рых зависит от перерабатываемого топлива, назначения процесса газификации и конструкции Г.

Бурное развитие газовой пром-сти в СССР привело к почти полной замене генераторных газов природными и попутными, т. к. себестоимость последних значительно ниже. В зарубежных странах, где мало природного газа, Г. широко применяются в различных отраслях пром-сти (ФРГ, Великобритания).

Лит.: Михеев В. П., Газовое топливо и его сжигание, Л., 1966. Н. И. Рябцев.

ГАЗОГЕНЕРАТОР, жидкостного ракетного двигателя, агрегат, в к-ром за счёт сгорания или разложения (термич., каталитич. и др.) топлива или его компонентов вырабатывается горячий газ (темп-ра 200-900 °С), служащий рабочим телом для привода турбонасосного агрегата, наддува топливных баков, работы системы управления и др. В Г. чаще всего совместно используются компоненты основного топлива при значениях коэфф. избытка окислительных элементов, отличных от единицы. Иногда в Г. разлагается один из компонентов основного топлива (окислитель или горючее), напр, несимметричный диметилгидразин. Могут применяться и вспомогат. ракетные топлива. В зависимости от состава вырабатываемого газа различают восстановит, или окислит. Г. Осн. элементы Г.- смесительная головка и корпус.

ГАЗОГЕНЕРАТОРНЫЙ АВТОМОБИЛЬ, автомобиль, двигатель к-рого работает на газе, получаемом из твёрдого топлива в газогенераторе, смонтированном на его шасси. В СССР работы по созданию Г. а. были начаты в 1923, серийный выпуск Г. а. (ЗИС-13) был освоен в 1938. В качестве топлива для Г. а. используются древесные чурки (преим. твёрдых пород, влажностью 20-25%) либо бурый уголь. Возможно применение древесного угля, торфа, полукокса, антрацита и др. Г. а. предназначены для эксплуатации в районах, отдалённых от мест произ-ва жидкого топлива. Г. а. широко применялись во время Великой Отечественной войны 1941-45, когда ощущался острый недостаток жидкого топлива для нужд автомобильного транспорта.

Газогенераторная установка автомобиля состоит из газогенератора, очистительно-охладительного и. газосмесит. устройств.

При работе на генераторном газе двигатель развивает значительно меньшую мощность, чем при работе на бензине, из-за меньшей теплоты сгорания газовоздушной смеси [2,4-2,5 кдж/м3 (580- 600 кал/м3)] по сравнению с бензо-воздуш-ной [3,5-3,6 кдж/м3 (830-850 кал/м3)]. Эти потери мощности могут быть частично компенсированы повышением степени сжатия двигателя (в связи с меньшей склонностью генераторного газа к детонации), а улучшение динамич. качеств автомобиля может быть достигнуто изменением передаточного отношения главной передачи.

Относительно большая масса газогенераторной установки (примерно 350 кг) снижает полезную грузоподъёмность Г. а. Г. а. на базе автомобиля ЗИЛ-164 (грузоподъёмность 3500 кг, мощность двигателя 47 квт) расходует на 100 км пробега 100-140 кг берёзовых чурок влажностью 25%.

Лит.: Токарев Г. Г., Газогенераторные автомобили, М., 1955. Г. Г. Терзибашъян.

ГАЗОДИЗЕЛЬ, газовый двигатель, засасывающий газо-воздушную смесь и сжимающий её настолько, что впрыснутая в конце хода сжатия небольшая порция жидкого топлива воспламеняется (как в дизеле). Степень сжатия ок. 15. Г. применяются в нефтяной и газовой пром-сти на газоперекачивающих станциях.

ГАЗОДИНАМИЧЕСКАЯ ЛАБОРАТОРИЯ (ГДЛ), первая советская ракетная н.-и. и опытно-конструкторская орг-ция. Создана в воен. ведомстве по инициативе Н. И. Тихомирова в 1921 в Москве для разработки ракетных снарядов на бездымном порохе. В 1927 перебазирована в Ленинград. В ГДЛ был создан бездымный порох на нелетучем растворителе (тро-тилпироксилиновый) с большой толщиной свода шашек. В 1927-33 разработаны пороховой старт лёгких и тяжёлых самолётов (У-1, ТБ-1 и др.), ракетные снаряды неск. калибров различного назначения для стрельбы с земли и самолётов. Снаряды с нек-рой доработкой в Реактивном научно-исследовательском институте (РНИИ) были использованы во время Великой Отечеств, войны 1941-45 в гвардейских реактивных миномётах ("Катюша"). В этих работах осн. творческое участие принимали Н. И. Тихомиров, В. А. Артемьев, Б. С. Петропавловский, Г. Э. Лангемак и др.

В 1929 в ГДЛ было организовано подразделение, в к-ром под руководством В. П. Глушко разрабатывались первый в мире электрич. ракетный двигатель (ЭРД) и первые советские жидкостные ракетные двигатели (ЖРД). В 1930-33 создано семейство ЖРД - от ОРМ, ОРМ-1 до ОРМ-52 тягой до 3000 н (~ 300 кгс). В 1930 впервые предложены в качестве окислителей для ракетного топлива азотная к-та, её растворы с четырёх-окисью азота, хлорная к-та, тетранитроме-тан, перекись водорода, а в качестве горючего - бериллий и др., созданы керамич. теплоизоляция камер сгорания двуокисью циркония и профилированное сопло, а в 1931 - самовоспламеняющееся горючее и химическое зажигание, карданная подвеска двигателя. В 1931 проведено ок. 50 стендовых огневых испытаний ЖРД. В 1931-32 разработаны и испытаны поршневые топливные насосы, приводимые в действие газом, отбираемым из камеры сгорания ракетного двигателя, в 1933 - конструкция турбонасосного агрегата с центробежными топливными насосами для двигателя тягой 3000 и. В создании ЭРД и ЖРД в лаборатории под руководством конструктора двигателей В. П. Глушко активно участвовали инженеры п техники А. Л. Малый, В. И. Серов, Е. Н. Кузьмин, И. И. Кулагин, Е. С. Петров, П. И. Минаев, Б. А. Кут-кин, В. П. Юков, Н. Г. Чернышёв и др.

В конце 1933 ГДЛ вошла в состав Реактивного научно-исследовательского института.

В связи с 40-летием ГДЛ на зданиях Главного Адмиралтейства и Иоанновско-го равелина Петропавловской -репости (Ленинград), там, где в 30-х годах размещалась ГДЛ, установлены мемориальные доски (рис.). Учитывая основополагающий вклад ГДЛ в развитие ракетной техники, комиссия АН СССР присвоила кратерной цепочке протяжённостью 1100 км на обратной стороне Луны наименование ГДЛ, а 10 лунным кратерам - имена сотрудников ГДЛ.

Лит.: Петрович Г. В., Развитие ракетостроения в СССР, ч. 1-2. М., 1968; его же, Ракетные двигатели, ГДЛ -ОКБ, 1929 -69,М., 1969; Космонавтика. Маленькая энциклопедия, 2 изд., М., 1970.

ГАЗОДИНАМИЧЕСКИЙ ЛАЗЕР, газовый лазер, в к-ром инверсия населён-ностей колебательных уровней энергии молекул газа создаётся адиабатич. охлаждением сверхзвуковых потоков газовых масс, предварительно нагретых до высокой темп-ры (1000-2000 °С, после охлаждения - 350 °С). Необходимый состав газа и требуемую темп-ру можно получить при сгорании заранее подобранных веществ, напр, при сгорании СО с воздухом. См. Газовый лазер.

ГАЗОЖИДКОСТНЫЙ ДВИГАТЕЛЬ,см. в ст. Газовый двигатель.

ГАЗОЙЛЬ (от газ и англ, oil - масло), фракции нефти, выкипающие в интервале 200-400 °С и занимающие при перегонке нефти промежуточное положение между керосином и лёгкими индустриальными маслами. Г. в основном применяют в качестве дизельного топлива, сырья для каталитического крекинга идр. Как товарный продукт с точно нормированными константами не вырабатывается.

ГАЗОКАМЕРА в ветеринарии, специальное помещение, предназначенное для окуривания сернистым ангидридом животных при чесотке, вшивости; применяется также для дезинсекции упряжи, снаряжения и предметов ухода за животными.

ГАЗОКАРОТАЖНАЯ СТАНЦИЯ, см.Газовый каротаж.

ГАЗОКОМПРЕССОРНАЯ СТАНЦИЯ, станция повышения давления природного газа при его добыче, транспортировании и хранении. По назначению Г. с. подразделяются на головные (дожимные) магистральных газопроводов, линейные Г. с. магистральных газопроводов, Г. с. подземных газохранилищ и Г. с. для обратной закачки газа в пласт. Осн. техно-логич. параметры Г. с.: производительность, мощность, степень сжатия газа и макс, рабочее давление.

Головные Г. с. магистральных газопроводов повышают давление газа, поступающего с промысла, начиная с момента, когда пластовое давление падает ниже уровня, обеспечивающего на входе в газопровод расчётное рабочее давление. Мощность и степень сжатия головной Г. с. наращиваются постепенно, по мере падения пластового давления, в течение всего периода постоянного отбора газа из месторождения. В период падающей добычи отбор газа из месторождения осуществляется в количестве, определяемом мощностью головной Г. с. Мощность головной Г. с. может достигать 100 Мвт (100 тыс. кет) и более. Степень сжатия станции (отношение выходного давления к входному) возрастает от 1,2-1,5 до 5-10 к концу эксплуатации.

Линейные Г. с. магистральных газопроводов компенсируют снижение давления в трубопроводе, поддерживая его на расчётном уровне. Степень сжатия и мощность линейных Г. с. зависят от производительности и технико-экономич. показателей компрессорных установок и общестанционного оборудования. Расстояние между линейными Г. с. (75-150 км) и рабочее давление зависят от параметров трубопровода и определяются технико-экономич. расчётом магистрального газопровода в целом. Диапазон рабочих параметров линейных Г. с.: степень сжатия 1,25-1,7; рабочее давление 5,5- 8 Мн/м2 (55 - 80 кгс/см2); мощность 3-75 Мвт; суточная производительность 5-100 млн. м3. Открытие крупных месторождений природного газа и высокая эффективность магистральных газопроводов большой производительности обусловливают тенденцию к дальнейшему увеличению мощности линейных Г. с. до 150-200 Мвт с суточной производительностью 300 млн. м3.

Г. с. для подземного газохранилища обеспечивает закачку транспортируемого газа в период избыточной производительности газопровода. В период отбора газа из подземного хранилища может быть предусмотрена работа Г. с. для обеспечения подачи газа потребителю. Рабочий диапазон давления, в пределах к-рого работает Г. с. лодземного хранилища, составляет во время закачки газа 1,5-15 Мн/м2 (15 - 150 кгс/см2). Нижний уровень зависит от давления газа, поступающего из газопровода, верхний - от предельного давления газа в хранилище. Мощность Г. с. подземного газохранилища может достигать 50 Мвт.

Г. с. для обратной закачки газа в пласт входит в комплекс переработки природного газа при эксплуатации газоконденсатных месторождений, когда необходимо в ходе добыч-ных работ поддерживать пластовое давление газа для предупреждения выпадения конденсата (связано с явлением обратной конденсации). Мощность и давление на приёме Г. с. для обратной закачки газа в пласт определяются технико-экономическим расчётом режима разработки месторождения. Давление на приёме обычно 14-15 Мн/м2, выходное давление достигает 40-50 Мн/м2 (400-500 кгс/см2).

Осн. технологич. оборудование Г. с.- компрессорные установки: центробежные нагнетатели с приводом от газовой турбины или электродвигателя и газомото-компрессоры. Мощность компрессорных установок достигает 15 Мвт. Для линейных Г. с. большой мощности проектируется использование центробежного нагнетателя с приводом от газотурбинной установки мощностью 25 Мвт и более. В технологич. комплекс Г. с. входят компрессорный цех, установки для очистки, осушки и охлаждения газа, электростанция собств. нужд (понизительная подстанция для Г. с. с электроприводом), узел связи и средства ремонтно-эксплуатац. обеспечения. Г. с. имеет диспетчерский пункт управления. Управление агрегатами компрессорного цеха осуществляется в зависимости от степени автоматизации с местных щитов или центр, пульта управления. Полностью автоматизированная Г. с. управляется дистанционно из центр, диспетчерского пункта.

Лит.: Руководство по добыче, транспорту и переработке природного газа, пер. с англ., LM.], 196э; Транспорт природного газа, [Сб. ст.], М., 1967; Бар мин С. Ф., Васильев П. Д., Магазаник Я. М., Компрессорные станции с газотурбинным приводом, Л.. 1968.

С. Н. Синицын.

ГАЗОЛИН (от газ и лат. oleum - масло), смесь лёгких жидких углеводородов, получаемая при перегонке нефти или при разделении пром. газов. Г.- легко воспламеняющаяся и взрывоопасная жидкость, применяется как топливо для карбюраторных двигателей внутр. сгорания (газовый бензин с пределами выкипания 30-200 °С), растворитель при экстракции масличных и смолистых веществ (фракция 70-100 °С), для лабораторно-аналитических работ (петролейный эфир с пределами выкипания 30-80 °С) и других целей. Г. как единый товарный продукт с точно нормированными свойствами промышленностью не вырабатывается.

ГАЗОМЁТ, устаревший вид химич. оружия, предназначавшегося для поражения живой силы и заражения местности отравляющими веществами. Впервые Г. были применены (1917) англ, армией в 1-ю мировую войну 1914-18. Г. состояли из коротких стволов диаметром 18 - 20 см и заряжались минами, к-рые содержали 13-14 кг химич. отравляющих веществ. Устанавливались на опорных плитах, вкапываемых в землю. Стрельба производилась залпами одновременно из неск. сотен Г. на дальность до 1,2 км .

ГАЗОН (франц. gazon), участок земли со специально созданным травянистым покровом, б. ч. ровно и коротко подстриженным. Различают партерные, парковые, спортивные и мавританские (пестро-цветные) Г. Партерные Г.- основной элемент цветника и партера, служат фоном для цветочных насаждений, декоративных деревьев, а также для скульптур, фонтанов и др. Парковые и мавританские Г. устраивают в парках, садах, скверах, на бульварах и т. д. Семена трав на Г. высевают гл. обр. весной, вручную или сеялкой в двух взаимно перпендикулярных направлениях, заделывают граблями или механизир. путём и прикатывают. Состав трав для Г. подбирают так, чтобы получить густой травостой и плотный дёрн. Из злаковых трав сеют в основном мятлик, овсяницу, райграс, полевицу (15-30 г семян на 1 м2). Для мавританских Г. составляют смесь семян злаков и красиво цветущих однолетников (мак, василёк, календула, иберис и др.). Уход за Г. состоит в поливах, удобрении, стрижке травы, полке сорняков, подсеве трав.

Лит.: Сааков С. Г., Газоны и цветочное оформление, М.- Л., 1934; Малько И. М., Садово-парковое строительство п хозяйство. 3 изд.. М., 1962.

ГАЗОНАПОЛНЕННЫЙ КАБЕЛЬ, высоковольтный (от 35 до 275 кв) кабель электрический, у которого пустоты изолирующего слоя (бумажная лента или син-тетич. плёнка) заполнены газом (обычно азотом) под давлением. Различают Г. к. низкого (от 0,07 до 0,15 Мн/м2), среднего (от 0,3 до 0,5 Мн/м2) и высокого (от 1,5 до 3 Мн/м2) давления. Г. к. обычно выполняют в общей металлич. оболочке со сплошными или уплотнёнными секторными жилами, покрытыми неск. слоями изолирующего материала. Г. к. бывают одно- и трёхжильные в свинцовой или алюминиевой оболочке и трёхжильные в стальном трубопроводе. Преимущества Г. к.- простота подпитки кабельной линии газом, удобство изготовления кабеля большой длины с предварительно пропитанной изоляцией, что особенно важно для подводной прокладки. Однако Г. к. имеют сравнительно низкую электрич. прочность изоляции, к-рая в значит, мере зависит от изменения темп-ры и давления газа.

ГАЗОНЕФТЯНОЙ СЕПАРАТОР, трап, аппарат для отделения попутного газа от нефти за счёт различия в их плотности. Выделению и отделению газа способствуют снижение давления, разбивка потока жидкости на тонкие струйки, уменьшение скорости и изменение направления