загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

ин-т прудового рыбного х-ва имеют широкую сеть Б. с., на к-рых проводятся исследования, связанные с разработкой биологич. основ рационального использования и воспроизводства рыбных и др. (животных и растит.) ресурсов морей и внутр. водоёмов. Варзобская горно-ботаническая станция, Памирская база АН Тадж. ССР, Горно-таёжная станция им. В. Л. Комарова (Приморский край) Дальневост. филиала Сиб. отделения АН СССР и др. разрабатывают проблемы освоения природных ресурсов горных территорий. Вопросами освоения пустынь занимаются, напр., Репетекская песчано-пустынная станция (1912) АН Туркм. ССР, Небит-Дагская агролесомелиоративная станция, Приаральская и туркм. опытные станции растениеводческого направления. Вопросы растениеводческой и животноводческой практики разрабатывает особая сеть сельскохозяйственных и зоотехнических станций. На мн. Б. с., помимо исследовательской работы, проводится летняя учебная и производств, практика студентов вузов. Запросы, выдвигаемые ср. школой, удовлетворяют спец. школьные Б. с. юных натуралистов.

Лит.: Келлер К., Жизнь моря. Животный н растительный мир моря, его жизнь н взаимоотношения, пер. с нем. с добавлением новой отдельной части "Жизнь русских морей" П. Ю. Шмидта, 2 изд., СПБ, 1905; 3ернов С. А., Общая гидробиология, М. - Л., 1949; Виноградов К. А., Очерки по истории отечественных гидробиологических исследований на Черном море, К., 1958; 3енкевия Л. А., Биология морей СССР, М., 1963; Кofoid Ch. A., The biological stations of Europe, Wash., 1910; Lenz F., Limnologische Laboratorien, в кн.: Handbuch der biologischen Arbeitsmethoden, hrsg. von E. Abderhalden, Abt. 9, Tl 2, Lfg 232, В.- W., 1927; Vaughan T. W., International aspects of oceanography, Wash., 1937; L i 1 1 i e F. K., The woods hole marine biological laboratory, Chi., 1944; Jack H. A., Biological field stations of the world, "Chronica botanica", 1945, v. 9, № 1; H i a t t R. W. (ed.), W'9rld directory of hydrobiological and fisheries institutions, Wash., 1963.

A. E. Гайсинович.

БИОЛОГИЧЕСКИЕ ЦИКЛЫ, ритмич. повторение биологии, явлений в сообществах организмов (популяциях, биоценозах), служащее приспособлением к циклич. изменениям условий их существования. Б. ц. входят в более общее понятие -биологические ритмы, включающее все ритмически повторяющиеся биология, явления. Б. ц. могут быть суточными, сезонными (годовыми) или многолетними. Суточные Б. ц. выражаются в закономерных колебаниях физиологич. явлений и поведения животных в течение суток (см. Активности цикл). В основе их лежат автоматич. механизмы, к-рые корректируются воздействием внешних факторов - суточными колебаниями освещённости, темп-ры, влажности и др. В основе сезонных Б. ц. лежат те же изменения обмена веществ, регулируемые у животных с помощью гормонов. В разные сезоны меняются состояние и поведение организмов в пределах популяции или биоценоза: происходит накопление (расходование) резервных веществ, смена покровов (линька), начинаются (заканчиваются) размножение, миграции животных, спячка и др. сезонные явления. Будучи в значит, мере автоматизированными, эти явления корректируются внешними влияниями (состоянием погоды, запасов пищи и т. п.). Многолетние Б. ц. обусловливаются циклич. колебаниями климата и др. условий существования (в связи с изменением солнечной активности и др. космич. или планетарных факторов); такие Б. ц. совершаются в популяциях и биоценозах и выражаются в колебаниях размножения и численности отдельных видов (см. Динамика численности животных, Волны жизни), в расселении популяции в новые места или вымирании её части. Эти явления - суммированный результат циклич. изменений популяций и биоценозов и колебаний условий их существования, гл. обр. климата.

Лит.: Щерби невский Н. С., Пустынная саранча шистоцерка, М., 1952 Наумов Н. П., Экология животных 2 изд., М., 1963; Биологические часы. Сб. ст. пер. с англ., М., 1964; Мартека В., Био ника, пер. с англ., М., 1967; Эмме А. М. Биологические часы, Новосибирск. 1967

Н. П. Наумов.

"БИОЛОГИЧЕСКИЕ ЧАСЫ", условный термин, обозначающий способность живого организма ориентироваться во времени. Основа "Б. ч." - строгая периодичность протекающих в клетках физ.-химич. процессов, скорость к-рых закономерно меняется. Ритм этих изменений наследственно закреплён естеств. отбором и связан с циклич. изменениями геофизич. факторов. Предложен ряд химич., физич. и математич. моделей "Б. ч." Нек-рые исследователи считают, что в основе "Б. ч." лежит способность организмов воспринимать циклич. колебания проникающих геофизич. факторов (суточная и сезонная периодичность электрич. и магнитного поля Земли, солнечной и космич. радиации и др.). У животных возникает связанная с "Б. ч." система измерения времени, позволяющая отсчитывать любые его интервалы (условный рефлекс на время). См. также Биологические ритмы.

Лит.: Эмме А. М.. Биологические часы, Новосибирск, 1967; Мартека В., Бионика, пер. с англ., М., 1967, с. 11-31.

В. Б. Чернышёв.

БИОЛОГИЧЕСКИЙ ИНСТИТУТ Сибирского отделения АН СССР, разрабатывает теоретические основы рационального использования, восстановления и обогащения биологич. ресурсов Сибири. Находится в Новосибирске. Организован в 1944 в составе Зап.-Сиб. филиала АН СССР под назв. Медико-биологический, в 1955 переименован в Б. и. В 1958 ин-т вошёл в состав вновь организованного Сиб. отделения АН СССР. В ин-те имеются лаборатории по зоологическому профилю, микробиологии и вирусологии насекомых, лесоведению, цитологии и апомиксису растений. С первых лет ин-т занимался широким исследованием флоры, особенно лекарственных растений, и фауны Сибири. С 1950 проводились исследования с целью разработки теоретич. основ охраны и увеличения поголовья охотничье-промысловых животных, освоения целинных и залежных земель, улучшения лугов, выращивания полезащитных лесных полос, ландшафтной типизации очагов природных инфекций. С 1959 ведутся исследования по экологии животных, по борьбе с гнусом и подкожными оводами, по разработке биологич. методов борьбы с вредителями леса и с. х-ва, по управлению динамикой численности популяций отдельных видов в зооценозах, по выяснению роли перелётных птиц в распространении арбовирусов, по цитологии и апомиксису растений. Ин-т имеет очную и заочную аспирантуру, издаёт "Труды Биологического института" (с 1956), выпуски - "Новые и малоизвестные виды фауны Сибири" (с 1965) и отдельные тематич. сборники и монографии. Из Б. и. выделились Центральный сибирский ботанический сад (в 1955) и Ин-т почвоведения и агрохимии Сиб. отделения АН СССР (в 1968).

Лит.: Черепанов А. И., Состояние и задачи исследований в Биологическом институте Западно-Сибирского филиала АН СССР, "Изв. АН СССР. Серия биологич.", 1958, № 2; его же, О состоянии и перспективах зоологических исследований в Биологическом институте, "Тр. Биологического ин-та Сибирского отделения АН СССР", 1959, в - 5. А. М. Черепанов.

БИОЛОГИЧЕСКИЙ ИСКУССТВЕННЫЙ СПУТНИК ЗЕМЛИ, предназначен для медико-биологич. экспериментов, связанных с космич. полётами. Б. и. с. 3. имеют на борту подопытных животных и др. организмы - растения, бактерии и т. п. (напр., "Космос-110"). В ряде случаев медико-биологич. эксперименты проводились на спутниках, имеющих другое осн. назначение, напр, на сов. кораблях-спутниках, пуски к-рых были осуществлены с целью подготовки первых полётов человека в космос.

БИОЛОГИЧЕСКИЙ МЕТОД ЗАЩИТЫ РАСТЕНИИ от вредителей и болезней, использование межвидовых и внутривидовых взаимоотношений ъ биоценозах и биологич. особенностей их обитателей (компонентов) с целью контроля численности и вредоносности организмов, повреждающих с.-х. растения. См. Защита растений.

БИОЛОГИЧЕСКИЙ МУЗЕЙ им. К. А. Тимирязева, в Москве, культурно-просветительное учреждение общебиологич. профиля. Открыт 7 мая 1922 при кафедре биологии Коммунистич. ун-та им. Я. М. Свердлова. Первым директором музея был Б. М. Завадовский, сыгравший большую роль в разработке принципов организации музея нового мировоззренческого типа. Н. К. Крупская писала: "Когда я смотрела естественно-исторический музей при Свердловском университете, организованный т. За-вадовским и его группой, я думала, как бы приветствовал Ильич устройство такого музея..." ("Советский музей", 1934, № 1, с. 5). В 1934 музей получил при содействии А. М. Горького постоянное помещение на М. Грузинской ул. Фонды Б. м. включают ряд уникальных предметов и коллекций, в т. ч. материалы, связанные с жизнью и деятельностью К. А. Тимирязева, И. В. Мичурина и др. учёных; собрание скульптурных портретов первобытных людей, выполненное М. М. Герасимовым, собрание представителей фауны СССР - чучела и тушки животных и птиц (в т. ч. из собраний рус. учёных Е. П. Спангенберга, М. А. Мензбира, П. П. Сушкина и др.); чучела и скульптуры с.-х. животных, ценные ботанич. собрания натуральных и гербаризированных материалов, отражающих различные этапы и методы работы по созданию новых сортов с.-х. растений и пород животных. В 1966 в Б. м. была организована экспозиция "Основы молекулярной биологии, генетики и селекции". В Б. м. демонстрируются открытый Н. И. Вавиловым закон гомологич. рядов в наследств, изменчивости, а также составленная им карта с обозначением центров происхождения культурных растений.

В 1970 в 17 залах Б. м. демонстрировались экспозиции на след, темы: строение Солнечной системы, возникновение и развитие нашей планеты; происхождение и развитие жизни на Земле; происхождение и становление человека; многообразие растит, мира; многообразие животного мира; биология и физиология растений (жизнь растений); жизнь и деятельность К. А. Тимирязева; биология и физиология животных и человека; эволюц. учение Ч. Дарвина; учение акад. И. П. Павлова о высшей нервной деятельности; жизнь и деятельность, принципы и методы работы И. В. Мичурина; методы работы и достижения сов. селекционеров в растениеводстве; методы работы и достижения сов. селекционеров в животноводстве; основы генетики и селекции; человек и природа. В Б. м. периодически организуются выставки по цветоводству, садоводству, аквариумному рыбоводству и т. д.; экскурсии проводятся более чем по 40 темам. Ежегодно Б. м. на базе своей экспозиции проводит св. 3,5 тыс. тематич. экскурсий. И. П. Кряжин.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ, изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения) или потоков заряжённых частиц (альфа-частиц, бета-излучения, протонов) и нейтронов.

Исследования Б. д. и. и. были начаты сразу после открытия рентгеновского излучения (1895) и радиоактивности (1896). В 1896 рус. физиолог И. Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Особенно интенсивно стали развиваться исследования Б. д. и. и. с началом применения атомного оружия (1945), а затем и мирного использования атомной энергии (см. Радиобиология ).

Для Б. д. и. и. характерен ряд общих закономерностей. 1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001 °С. Попытка объяснить "несоответствие" количества энергии результатам воздействия привела к созданию теории мишени (см. Мишени теория), согласно к-рой лучевое повреждение развивается при попадании энергии в особенно радиочувствит. часть клетки - "мишень". 2) Б. д. и. и. не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения Б. д. и. и. и защиты организма от излучений. 3) Для Б. д. и. и. характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от неск. мин до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции (рис. 1, 3). Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать "смерть под лучом", длительное же облучение в малых дозах ведёт к изменению состояния нервной и др. систем, к возникновению опухолей спустя годы после облучения.
[0351-5.jpg]

Рис. 1. Влияние дозы облучения на число (%) и сроки выживания клеток костного мозга крыс.

Радиочувствительность разных видов организмов различна. Смерть половины облучённых животных (при общем облучении) в течение 30 суш после облучения (летальная доза - ЛД 50/30) вызывается следующими дозами рентгеновского излучения: морские свинки 250 р, собаки 335 р, обезьяны 600 р, мыши 550 - 650 р, караси (при 18°С) 1800 р, змеи 8 000-20000 р. Более устойчивы одноклеточные организмы: дрожжи погибают при дозе 30 000 р, амёбы - 100 000 р, а инфузории выдерживают облучение в дозе 300 000 р. Радиочувствительность высших растений тоже различна: семена лилии полностью теряют всхожесть при дозе облучения 2000 р, на семена капусты не влияет доза в 64 000 р.

Большое значение имеют также возраст (рис. 2), физиол. состояние, интенсивность обменных процессов организма, а также условия облучения. При этом, помимо дозы облучения организма, играют роль: мощность, ритм и характер облучения (однократное, многократное, прерывистое, хроническое, внешнее, общее или частичное, внутреннее), его фи-зич. особенности, определяющие глубину проникновения энергии в организм (рентгеновское и гамма-излучение проникает на большую глубину, альфа-частицы до 40 мкм, бета-частицы - на неск. мм), плотность вызываемой излучением ионизации (под влиянием альфа-частиц она больше, чем при действии др. видов излучения). Все эти особенности воздействующего лучевого агента определяют относительную биологическую эффективность излучения. Если источником излучения служат попавшие в организм радиоактивные изотопы, то огромное значение для Б. д. и. и., испускаемого этими изотопами, имеет их химич. характеристика, определяющая участие изотопа в обмене веществ, концентрацию в том или ином органе, а следовательно, и характер облучения организма.
[0351-6.jpg]

Рис. 2. Выживаемость облучённых мышей (ЛД 50/30) в зависимости or возраста.

Первичное действие радиации любого вида на любой биол. объект начинается с поглощения энергии излучения, что сопровождается возбуждением молекул и их ионизацией. При ионизации молекул воды (косвенное действие излучения) в присутствии кислорода возникают активные радикалы (ОН- и др.), гидратарованные электроны, а также молекулы перекиси водорода, включающиеся затем в цепь химических реакций в клетке. При ионизации органич. молекул (прямое действие излучения) возникают свободные радикалы (см. Радикалы свободные), к-рые, включаясь в протекающие в организме химич. реакции, нарушают течение обмена веществ и, вызывая появление несвойственных организму соединений, нарушают процессы жизнедеятельности. При облучении в дозе 1000 р в клетке средней величины (10~9 г) возникает ок. 1 млн. таких радикалов, каждый из к-рых в присутствии кислорода воздуха может дать начало цепным реакциям окисления, во много раз увеличивающим количество изменённых молекул в клетке и вызывающим дальнейшее изменение надмолекулярных (субмикроскопич.) структур. Выяснение большой роли свободного кислорода в цепных реакциях, ведущих к лучевому поражению, т. н. кислородного эффекта, способствовало разработке ряда эффективных радиозащитных веществ, вызывающих искусственную гипоксию в тканях организма. Большое значение имеет и миграция энергии по молекулам биополимеров, в результате к-рой поглощение энергии, происшедшее в любом месте макромолекулы, приводит к поражению её активного центра (напр., к инактивации белка-фермента). Физич. и физико-химич. процессы, лежащие в основе Б. д. и. и., т. е. поглощение энергии и ионизация молекул, занимают доли сек (рис. 3).

Последующие биохимич. процессы лучевого повреждения развиваются медленнее. Образовавшиеся активные радикалы нарушают нормальные ферментативные процессы в клетке, что ведёт к уменьшению кол-ва богатых энергией (ма-кроэргических) соединений. Особенно чувствителен к облучению синтез дезоксирибонуклеиновых кислот (ДНК) в интенсивно делящихся клетках. Т. о., в результате цепных реакций, возникающих при поглощении энергии излучения, изменяются мн. компоненты клетки, в т. ч. макромолекулы (ДНК, ферменты и др.) и сравнительно малые молекулы (аденозинтрифосфорная к-та, коферменты и др.). Это приводит к нарушению ферментативных реакций, физиологич. процессов и клеточных структур.

[0351-7.jpg]

Рис. 3. Схема развития лучевого повреждения (в центре) и методы воздействия на него (справа).

Воздействие ионизирующего излучения вызывает повреждение клеток. Наиболее важно нарушение клеточного деления - митоза. При облучении в сравнительно малых дозах наблюдается временная остановка митоза. Большие дозы могут вызвать полное прекращение деления или гибель клеток. Нарушение нормального хода митоза сопровождается хромосомными перестройками, возникновением мутаций, ведущими к сдвигам в генетич. аппарате клетки, а следовательно, к изменению последующих клеточных поколений (цитогенетич. эффект.) При облучении половых клеток многоклеточных организмов нарушение генетич. аппарата ведёт к изменению наследств, свойств развивающихся из них организмов (см. Генетическое действие излучений). При облучении в больших дозах происходит набухание и пикноз ядра (уплотнение хроматина), затем структура ядра исчезает. В цитоплазме при облучении в дозах 10 000-20 000 р наблюдаются изменение вязкости, набухание протоплазматич. структур, образование вакуолей, повышение проницаемости. Всё это резко нарушает жизнедеятельность клетки.

Сравнит, изучение радиочувствительности ядра и цитоплазмы показало, что в большинстве случаев чувствительно к облучению ядро (напр., облучение ядер сердечной мышцы тритона в дозе неск. протонов на ядро вызвало типичные деструктивные изменения; доза в неск. тысяч раз большая не повредила цитоплазмы). Многочисл. данные показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки: при облучении поражаются прежде всего растущие ткани. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей - растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Возникающие в облучаемых клетках изменения ведут к нарушениям в тканях, органах и жизнедеятельности всего организма. Особенно выражена реакция тканей, в к-рых отд. клетки живут сравнит, недолго. Это слизистая оболочка желудка и кишечника, к-рая после облучения воспаляется, покрывается язвами, что ведёт к нарушению пищеварения и всасывания, а затем к истощению организма, отравлению его продуктами распада клеток (токсемия) и проникновению бактерий, живущих в кишечнике, в кровь (бактериемия). Сильно повреждается кроветворная система, что ведёт к резкому уменьшению числа лейкоцитов в периферич. крови и к снижению её защитных свойств. Одновременно падает и выработка антител, что ещё больше ослабляет защитные силы организма. (Уменьшение способности облучённого организма вырабатывать антитела и тем самым противостоять внедрению чужеродного белка используется при пересадке органов и тканей - перед операцией пациента облучают.) Уменьшается и количество эритроцитов, с чем связано нарушение дыхат. функции крови. Б. д. п. и. обусловливает нарушение половой функции и образования половых клеток вплоть до полного бесплодия (стерильности) облучённых организмов. Важную роль в развитии лучевого поражения животных и человека играет нервная система. Так, у кроликов смертельный исход при облучении в дозе 1000 р часто определяется нарушениями в центр, нервной системе, вызывающими остановку сердечной деятельности и паралич дыхания. Исследования биоэлектрич. потенциалов мозга облучённых животных и людей, подвергающихся лучевой терапии, показали, что нервная система раньше др. систем организма реагирует на радиационное воздействие. Облучение собак в дозе 5-20 р и хронич. облучение в дозе 0,05 р при достижении дозы в 3 р ведёт к изменению условных рефлексов. Большую роль в развитии лучевой болезни играют и нарушения деятельности желез внутренней секреции.

Для Б. д. и. и. характерно последействие, к-рое может быть очень длительным, т. к. по окончании облучения цепь биохимич. и физиологич. реакций, начавшихся с поглощения энергии излучения, продолжается долгое время. К отдалённым последствиям облучения относятся изменения крови (уменьшение числа лейкоцитов и эритроцитов), нефросклероз, циррозы печени, изменения мышечных оболочек сосудов, раннее старение, появление опухолей (см. Бластомогенное действие излучений). Эти процессы связаны с нарушением обмена веществ и нейроэндокринной системы, а также повреждением генетич. аппарата клеток тела (соматические мутации).

Растения, по сравнению с животными, более радиоустойчивы. Облучение в небольших дозах может стимулировать жизнедеятельность растений (рис. 4) - прорастание семян, интенсивность роста корешков, накопление зелёной массы и др. Большие дозы (20 000-40 000 р) вызывают снижение выживаемости растений, появление уродств, мутаций, возникновение опухолей. Нарушения роста и развития растений при облучении в значит, степени связаны с изменениями обмена веществ и появлением первичных радиотоксинов, к-рые в малых количествах стимулируют жизнедеятельность, а в больших - подавляют и нарушают её. Так, промывка облучённых семян в течение суток после облучения снижает угнетающий эффект на 50-70%.

[0351-8.jpg]

Рис. 4. Зависимость числа проросших глазков картофеля сорта Лорх от дозы облучения.

Лучевое повреждение организма сопровождается одновременно текущим процессом восстановления, к-рый связан с нормализацией обмена веществ регенерацией клеток. Поэтому облучени дробное или с малой мощностью доз вы зывает меньшее повреждение, чем массивное воздействие. Изучение процессе восстановления важно для поисков радиозащитных веществ, а также средств и методов защиты организма от излучений В небольших дозах . все обитатели Земли постоянно подвержены действию ионизирующего излучения - космич. лучей и радиоактивных изотопов, входящих в состав самих организмов и окружающей среды (см. Радиоактивность атмосферы, Радиоактивное загрязнение биосферы). Испытания атомного оружия и мирное применение атомной энергии повышают фон радиоактивный. Это делает изучение Б. д. и. и. и поиски защитных средств всё более важными.

Б. д. и. и. пользуются в биол. исследованиях, в мед. и с.-х. практике. На Б. д. и. и. основаны лучевая терапия рентгенодиагностика, радиоизотопная терапия.

В с. х-ве радиационные воздействия применяются с целью выведения новых форм растений, для предпосевной обработки семян, борьбы с вредителями (путём выведения и выпуска на поражаемых плантации обеспложенных облучением самцов), для лучевой консервации фруктов и овощей, предохранении продуктов растениеводства от вредителей (дозы, губительные для насекомых, безвредны для зерна) и др.

БИОЛОГИЧЕСКОЕ НАПРАВЛЕНИЕ В СОЦИОЛОГИИ, учения и школы немарксистской социологии 2-й половин] 19 в., общим признаком которых является применение понятий и законов биологии при анализе обществ. жизни Хотя аналогии с органич. миром в социальных теориях известны уже с античности перенесение законов биологии на явления обществ. жизни получило особенное распространение во 2-й пол. 19 в., в связи с успехами биологии (открытие клетки закона борьбы за существование и естеств. отбора и др.). К Б. н. в социологии могут быть отнесены учение Г. Спенсера, pacово-антропологическая школа (Ж. A. Гoбино, X. Чемберлен, Ж. Лапуж, О. Аммон и др.), органическая школа в социологии (П. Лилиенфельд, А. Шеффле, Р. Ворм и др.), социал-дарвинизм (Л. Гумплович Г. Ратценхофер, А. Смолл и др.). Школа Б. н. придерживались различной идеологич. и политич. ориентации - от реакционной, обосновывавшей войны, угнетении одних рас и социальных групп другими (расово-антропологич. школа), до либеральной (органич. школа). Биологич. теории общества ставили нек-рые сложные вопросы (проблема целостности общества, его структура и функции отд. частей, изучение социальных конфликтов и др.). Однако эти теории были недостаточны для объяснения сложных социальных процессов, приводили к антиисторизму, поверхностные аналогии часто заменяли конкретное изучение явлений обществ, жизни. В кон. 19 - нач. 20 вв. биологич. теории постепенно вытесняются в немарксистской социологии психологич. теориями (см. Психологизм в социологии).

Лит.: Кон И. С., Позитивизм в социологии, Л., 1964; Sorokin P. A., Contemporary sociological theories, 2 ed., N. Y.- L., 1964.


 БИОЛОГИЧЕСКОЕ ОБРАЗОВАНИЕ, система подготовки биологов для н.-и. учреждений и преподавателей биологич. дисциплин. Знание биологии предусматривается при подготовке специалистов с мед., с.-х., пед. и др. естественнонаучным спец. образованием. Как обязательный уч. предмет биология изучается в общеобразоват. школе. Б. о. имеет мировоззренческое значение, способствует формированию материалистич. представлений о живой природе и борьбе с религ. предрассудками. В СССР подготовка специалистов с высшим Б. о. осуществляется на биологич. и биолого-почвенных ф-тах ун-тов и на ф-тах естествознания, биолого-химич., биолого-географич. отделениях пед. ин-тов, в мед., с.-х., зооветеринарных, рыбных и нек-рых др. вузах.

В России преподавание биологии началось в сер. 18 в. на мед. ф-те Моск. ун-та, а затем в нач. 19 в. на мед. ф-тах ун-тов в Дерпте (ныне Тарту), Казани, Харькове. С 40-х гг. биологич. дисциплины были включены в уч.планы с.-х. ин-тов, к-рые стали создаваться в это время.

В течение 19в. в Московском, Петербургском и других ун-тах возникли крупные науч. биологич. школы и направления, нек-рые из них получили мировое признание и стали классическими. Однако Б. о. как самостоятельная отрасль специального образования сформировалось только после Великой Октябрьской социа-листич. революции. В 1923-27 во многих ун-тах открылись самостоят, биологич. ф-ты или отделения, расширилась сеть пед. ин-тов, имеющих биологич. отделения. За годы Сов. власти создана гос. система подготовки специалистов с высшим общебиологич. (университетским и педагогич.) и спец. биологич. (мед. и с.-х.) образованием.

Биологич. и биолого-почвенные ф-ты ун-тов (в нек-рых ун-тах - химико-биологич., биолого-географич., естеств. наук ф-ты) готовят биологов широкого профиля с узкой специализацией по отдельным отраслям биологич. науки (ботаника, зоология, физиология растений, микробиология, цитология, биофизика, биохимия, вирусология, генетика и др.), а также специалистов в области смежных наук (цитохимии, биохимич. генетики, экологич. физиологии, бионики и т. п.), почвоведов и агрохимиков. Б. о. складывается из изучения общенаучных (физика, математика, химия, история КПСС, науч. коммунизм, политэкономия, философия и т. д.) и биологич. дисциплин. Биологич. дисциплины делятся на общие (изучаемые всеми студентами)и специальные (по свободному выбору для углублённой подготовки в определённой отрасли биологии) курсы. Общими являются: ботаника, зоология, микробиология, биохимия, цитология, гистология и эмбриология, физиология растений, физиология животных и человека, генетика с основами селекции, биофизика и др. Помимо специальных курсов по общим биологич. дисциплинам, существует специализация в таких отраслях биологич. науки, как экология животных и растений, ботанич. география, генетика растений, генетика микроорганизмов, вирусология, радиобиология, витаминология, протистология и т. д. Кроме того, в университетах готовятся почвоведы и агрохимики, к-рые также получают глубокие знания в области биологии. Срок обучения на биологич. ф-тах ун-тов от 5 до 6 лет (в зависимости от формы обучения - дневной, вечерней или заочной). В 1969 биологич. ф-ты (специальности) имелись в 42 университетах (св. 40 тыс. студентов; ежегодный выпуск -св. 5 тыс. чел.).

В пед. ин-тах Б. о., как правило, является комплексным и обеспечивает подготовку учителей по двум специальностям: учитель биологии и химии, биологии и основ с.-х. произ-ва, географии и биологии. Студенты пед. ин-тов изучают общенауч. и биологич. дисциплины, спецкурсы по выбору, а также предметы пед. цикла, в т. ч. методику преподавания биологии. В программу подготовки учителей биологии и основ с. х-ва, кроме того, включён широкий круг агрономич. дисциплин (см. Педагогическое образование). Срок обучения в пед. ин-тах 4 -5 лет (в зависимости от формы обучения и профиля подготовки). В 1969 учителей биологии готовили 125 пед. ин-тов (св. 104 тыс. студентов, в т. ч. 57 тыс. с двумя специальностями); ежегодный выпуск -ок. 15 тыс., в т. ч. 9,3 тыс. с двумя специальностями.

Вспомогательное Б. о. получают выпускники мед. и с.-х. вузов. В уч. планах мед. вузов имеются обязательные курсы биологии и паразитологии, биохимии, микробиологии, норм, анатомии, гистологии с цитологией и эмбриологией и др., в планах с.-х. вузов - общие и спец. курсы по биологии, зоологии, микробиологии, анатомии и физиологии с.-х. животных, физиологии растений, ботанике с геоботаникой, биохимии и др. (см. Медицинское образование, Сельскохозяйственное образование).

В связи с бурным развитием биологич. науки и всё возрастающими потребностями нар. х-ва в специалистах с Б. о. существенно увеличился выпуск биологов, специализирующихся в таких областях науки, как биохимия, биофизика, генетика, вирусология, радиобиология, молекулярная биология и др. Создаются отделения и кафедры биофизики и биохимии на биологич., физико-математич. и химич. ф-тах ун-тов и др. вузов. В Новосибирском ун-те имеется медико-биологич. отделение, к-рое выпускает теоретич. работников в области медицины. 2-й Московский медицинский институт готовит врачей биофизиков и биохимиков. Подготовка специалистов биологов для науч. и пед. работы осуществляется в аспирантуре, в т. ч. и во многих н.-и. ин-тах. Через систему аспирантуры в область биологии приходят специалисты и с физическим, химическим и математическим образованием. Решающее значение для совершенствования системы Б. о. имеет постановление ЦК КПСС и Совета Министров СССР "О мерах по дальнейшему развитию биологической науки и укреплению её связи с практикой" (1963), в к-ром предусмотрены мероприятия по дальнейшему развитию биологич., мед. и с.-х. образования.

Широкое развитие Б. о. получило и за рубежом. Среди крупнейших центров Б. о.- Калифорнийский (США), Оксфордский (Великобритания), Парижский, Варшавский, Карлов (ЧССР), Берлинский (ГДР) ун-ты. Ж. А. Медведев.

БИОЛОГИЯ. Содержание:

Введение
Система биологических наук
Краткий исторический очерк
Уровни организации и изучения жизненных явлений
Некоторые проблемы современной биологии
Значение биологии для сельского и промыслового хозяйства, медицины
Заключение
Литература

Биология (от био... и ...логия), совокупность наук о живой природе. Предмет изучения Б.-все проявления жизни: строение и функции живых существ и их природных сообществ, их распространение, происхождение и развитие, связи друг с другом и с неживой природой. Задачи Б. состоят в изучении всех биол. закономерностей, раскрытии сущности жизни и её проявлений с целью познания и управления ими. Термин "Б." предложен в 1802 независимо друг от друга двумя учёными -франц. Ж. Б. Ламарком и нем. Г. Р. Тре-виранусом. Иногда термин "Б." употребляют в узком смысле, аналогичном понятиям экология и биономия.

Введение

Осн. методы Б.: наблюдение, позволяющее описать биол. явление; сравнение, дающее возможность найти закономерности, общие для разных явлений (напр., особей одного вида, разных видов или для всех живых существ); эксперимент, или опыт, в ходе которого исследователь искусственно создаёт ситуацию, помогающую выявить глубже лежащие свойства биол. объектов; наконец, исторический метод, позволяющий на основе данных о совр. органич. мире и его прошлом познавать процессы развития живой природы. В совр. Б. между этими осн. методами исследования нельзя провести строгой границы; когда-то оправданное разделение Б. на описат. и эксперимент, разделы теперь утратило своё значение.

Б. тесно связана со мн. науками и с практич. деятельностью человека. Для описания и исследования биол. процессов Б. привлекает химию, физику, математику, мн. технич. науки и науки о Земле - геологию, географию, геохимию. Так возникают биол. дисциплины, смежные с др. науками,- биохимия, биофизика и пр., и науки, в к-рые Б. входит как составная часть, напр, почвоведение, включающее изучение процессов, протекающих в почве под влиянием почвенных организмов, океанология и лимнология, включающие изучение жизни в океанах, морях и пресных водах.

В связи с выходом Б. на передовые рубежи естествознания, ростом значения и относит, роли Б. среди др. наук, в частности в качестве производит, силы общества, 2-ю пол. 20 в. часто называют "веком Б.". Огромно значение Б. для формирования последовательно материалистич. мировоззрения, для доказательства естественноисторич. происхождения всех живых существ и человека с присущими ему высшими формами разумной деятельности, для искоренения веры в сверхъестественное и изначальную целесообразность (теология и телеология). Важную роль играет Б. в познании человека и его места в природе. По словам К. Маркса, Б. и разработанное в её недрах эволюционное учение дают естественноисторич. основу материалистич. взглядам на развитие общества. Победа эволюционной идеи в 19 в. покончила в науке с верой в божественное сотворение живых существ и человека (креационизм). Б. доказывает, что в основе жизненных процессов лежат явления, подчиняющиеся законам физики и химии. Это не исключает наличия в живой природе особых биол. закономерностей, к-рые, однако, не имеют ничего общего с представлением о существовании непознаваемой "жизненной силы" -vis vitalis (см. Витализм). Т. о., благодаря прогрессу Б. рушатся главные опоры религиозного мировоззрения и филос. идеализма. Методелогич. основой совр. Б. является диалектический материализм. Даже исследователи, далёкие от утверждения материализма в филос. концепциях, своими работами подтверждают принципиальную познаваемость живой природы, вскрывают объективно существующие закономерности и проверяют правильность познания опытом, практикой, т. е. стихийно стоят на материалистич. позициях.

Вскрываемые Б. закономерности -важная составная часть совр. естествознания. Они служат основой медицины, с.-х. наук, лесного х-ва, звероводства, охотничьего и рыбного х-ва. Использование человеком богатств органич. мира строится на принципах, вскрываемых Б. Данные Б., относящиеся к ископаемым организмам, имеют значение для геологии. Мн. биол. принципы применяют в технике. Использование атомной энергии, а также космич. исследования потребовали создания и усиленного развития радиобиологии и космич. Б. Только на основе биол. исследований возможно решение одной из самых грандиозных и насущных задач, вставших перед человечеством,- планомерной реконструкции биосферы Земли с целью создания оптимальных условий для жизни увеличивающегося населения планеты.

Система биологических наук

Система биол. наук чрезвычайно многопланова, что обусловлено как многообразием проявлений жизни, так и разнообразием форм, методов и целей исследования живых объектов, изучением живого на разных уровнях его организации. Всё это определяет условность любой системы биол.наук. Одними из первых в Б. сложились науки о животных - зоология и растениях - ботаника, а также анатомия и физиология человека - основа медицины. Другие крупные разделы Б., выделяемые по объектам исследования, - микробиология - наука о микроорганизмах, гидробиология -наука об организмах, населяющих водную среду, и т. д. Внутри Б. сформировались более узкие дисциплины; в пределах зоологии - изучающие млекопитающих - териология, птиц - орнитология, пресмыкающихся и земноводных -герпетология, рыб и рыбообразных -ихтиология, насекомых - энтомология, клещей - акарология, моллюсков - малакология, простейших - протозоология; внутри ботаники - изучающие водоросли - альгология, грибы - микология, лишайники - лихенология, мхи - бриология, деревья и кустарники - дендрология и т. д. Подразделение дисциплин иногда идёт ещё глубже. Многообразие организмов и распределение их по группам изучают систематика животных и систематика растений. Б. можно подразделить на неонтологию, изучающую совр. органич. мир, и палеонтологию -науку о вымерших животных (палеозоология) и растениях (палеоботаника).

Др. аспект классификации биол. дисциплин - по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологич. дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды - экология; изучение разных функций живых существ - область исследований физиологии животных и физиологии растений; предмет исследований генетики - закономерности наследственности и изменчивости; этологии -закономерности поведения животных; закономерности индивидуального развития изучает эмбриология или в более широком совр. понимании - биология развития; закономерности историч. развития -эволюционное учение. Каждая из назв. дисциплин делится на ряд более частных (напр., морфология - на функциональную, сравнительную и др.). Одновременно происходит взаимопроникновение и слияние разных отраслей Б. с образованием сложных сочетаний, напр, гисто-, цито- или эмбриофизиология, цитогенетика, эволюционная и экологическая генетика и др. Анатомия изучает строение органов и их систем макроскопически; микроструктуру тканей изучает гистология, клеток - цитология, а строение клеточного ядра - кариология. В то же время и гистология, и цитология, и кариология исследуют не только строение соответствующих структур, но и их функции и биохимич. свойства.

Можно выделить в Б. дисциплины, связанные с использованием определённых методов исследования, например биохимию, изучающую осн. жизненные процессы химич. методами и подразделяемую на ряд разделов (биохимия животных, растений и т. п.), биофизику, вскрывающую значение физич. закономерностей в процессах жизнедеятельности и также подразделяемую на ряд отраслей. Биохимич. и биофизич. направления исследований зачастую тесно переплетаются как между собой (напр., в радиационной биохимии), так и с др. биол. дисциплинами (напр., в радиобиологии). Важное значение имеет биометрия, в основе к-рой лежат математич. обработка биол. данных с целью вскрытия зависимостей, ускользающих при описании единичных явлений и процессов, планирование эксперимента и др.; теоретич. и математич. Б. позволяют, применяя логич. построения и математич. методы, устанавливать более общие биол. закономерности.

В связи с изучением живого на разных уровнях его организации выделяют молекулярную биологию, исследующую жизненные проявления на субклеточном, молекулярном уровне; цитологию и гистологию, изучающие клетки и ткани живых организмов; популяционно-видовую Б. (систематику, биогеографию, популяционные направления в генетике и экологии), связанную с изучением популяций как составных частей любого вида организмов; биогеоценологию, изучающую высшие структурные уровни организации жизни на Земле, вплоть до биосферы в целом. Важное место в Б. занимают как теоретич., так и практич. направления исследований, резкую границу между к-рыми трудно провести, т. к. любое теоретич. направление неизбежно связано (прямо или косвенно, в данный момент или в будущем) с выходами в практику. Теоретич. исследования делают возможными открытия, революционизирующие мн. отрасли практич. деятельности, они обеспечивают успешное развитие прикладных дисциплин, напр. пром. микробиологии и технич. биохимии, защиты растений, растениеводства и животноводства, охраны природы, дисциплин медико-биол. комплекса (паразитология, иммунология и т. д.). В свою очередь, отрасли прикладной Б. обогащают теорию новыми фактами и ставят перед ней задачи, определяемые потребностями общества. Из практически важных дисциплин быстро развиваются бионика (изучение технич. приложений биол. закономерностей), космическая биология (изучение биол. действия факторов мирового пространства в проблем освоения космоса), астробиология или экзобиология (исследование жизни вне Земли). Изучением человека как продукта и объекта биол. эволюции занимается ряд биол. дисциплин - антропология, генетика и экология человека, мед. генетика, психология,- тесно связанных с социальными науками.

Особо следует выделить неск. фундаментальных областей Б., исследующих наиболее общие, присущие всем живым существам закономерности и составляющих основу совр. общей Б. Это наука об осн. структурно-функциональной единице организма - клетке, т. е. цитология; наука о явлениях воспроизведения и преемственности морфо-физиологич. организации живых форм - генетика; наука об онтогенезе - биология развития; наука о законах историч. развития органич. мира - эволюционная теория, а также физико-химич. Б. (биохимия и биофизика) и физиология, изучающие функциональные проявления, обмен веществ и энергии в живых организмах. Из приведённого далеко не полного перечня биол. дисциплин видно, как велико и сложно здание совр. Б. и как прочно вместе с соседними науками, изучающими закономерности неживой природы, оно связано с практикой.

Краткий исторический очерк

Совр. Б. уходит корнями в древность. Древние цивилизации на В. и Ю. Азии (Китай, Япония, Индия) развивались самобытным путём и не оказали прямого влияния на европ. науку. Совр. Б. берёт начало в странах Средиземноморья (Древний Египет, Древняя Греция). Первые систематич. попытки осмыслить явления жизни были сделаны др.-греч., а в дальнейшем др.-рим. натурфилософами и врачами (начиная с6 в. дон. э.). Особенно большой вклад в развитие Б. внесли Гиппократ, Аристотель и Гален. В ср. века накопление биол. знаний диктовалось в осн. интересами медицины. Растения изучались преим. в связи с их лекарственными свойствами. Вскрытия человеч. тела были запрещены, и преподававшаяся по Галену анатомия была в действительности анатомией животных, гл. обр. свиньи и обезьяны. Аристотель был осн. философским авторитетом церкви, однако многие его произведения игнорировались, а иногда запрещались. В эпоху Возрождения получили распространение соч. античных натуралистов, а также энциклопедистов средневековья, писавших о природе. Географич. открытия, связанные с путешествиями в страны Средиземноморья, а затем и к берегам Африки и вокруг неё (1497), открытие Сев. Америки (1492) и др. обогатили знания о мире растений и животных. Способствовало этому и создание ботанич. садов при ун-тах и зверинцев.

Первые ботанич. труды были комментариями к соч. антич. учёных Теофра-ста, Диоскорида и Плиния Старшего. В дальнейшем появляются оригинальные "травники" - перечни лекарственных растений с их кратким описанием и изображением. Растения делили на деревья, кустарники и травы. Лишь итал. ботаник А. Чезальпино сделал попытку (1583) создания классификации на основе строения семян, цветков и плодов. У Чезальпино имеются зачатки учения о метаморфозе, а также понятий рода и вида. Многотомные компилятивные энциклопедии были составлены по зоологии: "История животных" швейц. учёного К. Геснера (т. 1-5, 1551-87) и серия монографий (13 тт., 1599-1616) итал. учёного У. Альдрованди. Появились описания "заморских" животных, осн. на наблюдениях в природе и на посещении далёких стран, франц. учёного Г. Ронделе, итал. - И. Сальвиани - о рыбах и мор. животных, и особенно франц. натуралиста П. Белона - о рыбах и птицах, а также о животных Бл. Востока. Белой впервые попытался сопоставить строение птицы и человека, изобразив рядом их скелеты (1555).

Блестящие успехи анатомии в эпоху Возрождения были связаны с внедрением анатомирования человеческого тела в практику как преподавания, так и исследования. Факты несоответствия реальных наблюдений книжным, основанным на авторитете Галена, решился опубликовать флам. учёный А. Везалий в своём труде "О строении человеческого тела" (1543). Опровержение утверждения Галена о наличии пор в стенке сердца, разделяющей его желудочки, показало несостоятельность теории движения крови по Галеиу и подвело к выводу о существовании малого круга кровообращения. Этот вывод сделали исп. учёный М. Сервет (1553), а вслед за ним итал.- Р. Колумб (1559).

Труды анатомов подготовили великое открытие 17 в.- учение У. Гарвея о кровообращении (1628) - образец физиол. исследования на основе количественных измерений и применения законов гидравлики в соответствии с нарождающимся механич. направлением в медицине. Виднейшими представителями ятромеханики были итал. учёные С. Санторио, пытавшийся на себе проверить количественную сторону обмена веществ в теле человека (1614), и Дж. Борелли, стремившийся объяснить законами механики все формы движения животных (1680), в т. ч. мышечное сокращение и пищеварение. Эти объяснения наталкивались на непреодолимые трудности и находились в оппозиции к ятрохимич. направлению (см. Ятрохимия), объяснявшему все жизненные процессы на основе учения о ферментациях (брожениях), развитого в 16 в. нем. врачом и химиком Ф. Парацельсом. Учение о ферментациях объясняло и издавна допускавшееся самозарождение, а также зарождение и развитие, совершающиеся якобы путём смешения семенных жидкостей при оплодотворении. Даже Гарвей, провозгласивший осн. принципом размножения животных положение "всё из яйца" (1651), допускал самозарождение для низших животных, у к-рых не были обнаружены яйца. Эксперименты итал. учёного Ф. Реди (1668), показавшего, что "самозарождение" личинок мух в гниющем мясе объясняется развитием последних из отложенных мухами яиц, в то время ещё не решили окончательно вопроса.

С созданием микроскопа (17 в.) возможности изучения живых существ расширились и углубились. Плеяда блестящих микроскопистов открывает клеточное и волокнистое строение растений (англ, учёный Р. Гук, 1665; итал.- М. Мальпиги, 1675-79; англ.-Н. Грю, 1671-82), мир микроскопических существ, эритроциты и сперматозоиды (голл.- А. Левен-гук, 1673 и позже), изучает строение и развитие насекомых (Мальпиги, 1669; голл.- Я. Сваммердам, 1669 и позже), движение крови в капиллярах (Мальпиги, 1661), обнаруживает яйца у рыб и фолликулы в яичниках млекопитающих, принимаемые за яйца (дат.-Н. Стено, 1667: голл.- Р. де Грааф, 1672), устанавливает половые различия у растений (англ.- Т. Миллингтон, 1676; нем. -Р. Камерариус, 1694). Эти открытия привели к возникновению двух ошибочных направлений в эмбриологии - овистов и анималькулистов (сперматистов), отрицавших участие одного из полов в оплодотворении. Обе точки зрения сходились на том, что истинного развития в действительности не происходит, но, по одной, в яйце, по другой, в сперматозоиде заключён готовый миниатюрный зародыш будущего организма (см. Преформизм). Теория эпигенеза, сформулированная Аристотелем и Гарвеем, была отклонена как наивная и механистическая.

Искусств, системы растений попытались построить англ, учёный Дж. Рей, описавший в своей "Истории растений" (1686-1704) св. 18 тыс. растений, сгруппированных в 19 классов, и франц.-Ж. Турнефор, распределивший их по 22 классам (1700). Рей определил понятие "вид" и, использовав труды англ, учёного Ф. Уиллоби, дал классификацию позвоночных, осн. на анатомо-физиол. признаках (1693).

18 век. Всеобъемлющую для того времени "Систему природы" (1735), осн. на признании неизменности изначально сотворённого мира, предложил швед, натуралист К. Линней. Свою систему растений, названную им "сексуальной", он построил, исходя из числа тычинок и др. признаков цветков. Его классификация животных была более естественной и строилась с учётом их внутренних особенностей. Линней выделил класс млекопитающих, в к-рый он правильно включил китов, а также человека, отнесённого им вместе с обезьянами к отряду приматов. Огромная заслуга Линнея - введение бинарной номенклатуры с двойным наименованием (по роду и виду) каждой формы растений и животных. Искусств, система Линнея не удовлетворяла мн. ботаников, пытавшихся найти "естественную" систему растений, в соответствии с их сходством и "сродством". Франц. ботаник Б. Жюсьё осуществил её (1759) лишь в виде насаждений в Королевском саду в Трианоне (Версаль), а франц. учёный М. Адансон пытался создать естеств. систему семейств растений (1763). Завершил эти попытки франц. ботаник А. Л. Жюсьё в своём труде "Роды растений, расположенные по естественным порядкам" (1789). Враждебную позицию по отношению ко всяким системам, в т. ч. и Линнея, занял франц. натуралист Ж. Бюффон. Его "Естественная история", 36 тт. к-рой он успел опубликовать (1749-88), включает описание не только животных и человека, но и минералов и историю прошлого Земли. Бюффон искал единства в плане строения животных, строил догадки о прошлом животного мира и пытался объяснить сходство близких форм их происхождением друг от друга. Т. о., трансформизм Бюффона был ограниченным, но и от него он был вынужден отречься под угрозой отлучения от церкви (1751). Идеи Бюффона относительно размножения и развития организмов имели большое значение для опровержения учения о преформации. Они знаменовали возврат к учению о двух семенных жидкостях, участвующих в оплодотворении (1749). Бюффон пытался возродить и антич. концепцию пангенезиса, утверждая, что в семенной жидкости собираются "органические молекулы", представляющие все части тела. Развитие особи франц. учёный П. Мопертюи (1744) и Бюффон объясняли силами притяжения и отталкивания между органич. молекулами. Возрождению учения об эпигенезе больше всех способствовал рус. акад. К. Ф. Вольф (1759-68). Развитие он объяснял действием некоей "существенной силы", обеспечивающей движение питат. соков в зародышах. Вольф приписывал этой силе физич. свойства притяжения и отталкивания, по аналогии с силой тяготения (1789). Т. о., это была не виталистич. концепция, а своеобразная реакция на "механическую" медицину. Начало этому положил нем. врач и химик Г. Шталь, противопоставивший свою теорию анимизма (1708) концепциям человека-машины, управляемой флюидами. Приписывая "душе" управление всей жизнедеятельностью организма, он исходил из фактов зависимости физиол. реакций от нервно-психич. воздействий. Его учение о "жизненном тонусе", берущее начало от принципа "раздражимости" (англ, учёный Ф. Глиссон, 1672), получило дальнейшее развитие в учении нем. физиолога А. Галлера о раздражимости (1753). Экспериментально показав различие между сократимостью мышечных волокон и способностью нервов и мозга проводить раздражения, Галлер приписал их действию двух "сил", присущих самим волокнам и тканям организма. Вслед за Галлером чеш. анатом и физиологи. Про-хаска допускает наличие единой "нервной силы", обеспечивающей без участия мозга как восприятие возбуждения, так и передачу его двигательным органам (1784). Такое же истолкование получили и сенсационные опыты итал. учёного Л. Гальвани, обнаружившего "животное электричество" (1791), что привело в дальнейшем к развитию электрофизиологии (нем. физиолог А. Гумбольдт, 1797; итал.- К. Маттеуччи, 1840; нем.-Э. Дюбуа-Реймон, 1848).

В области физиологии дыхания много сделали англ, учёный Дж. Пристли, показавший (1771-78) в опытах на растениях, что они выделяют газ, способствующий горению и необходимый для дыхания животных, а также франц.-А. Лавуазье, П. Лаплас и А. Сеген, выяснившие свойства кислорода в окислит, процессах и роль его в дыхании и образовании животного тепла (1787-90). Роль солнечного света в способности зелёных листьев выделять кислород, используя углекислый газ из воздуха, установили голл. врач Я. Ингенхауз (1779), швейц. учёные Ж. Сенебье (1782) и Н. Соссюр (1804). В кон. 18 в. начинают широко изучать вещества, выделяемые из животных и растений, закладывая тем самым основы будущей органич. химии (открытие мочевины, холестерина, органич. кислот и др.).

Рус. акад. И. Кёльрёйтер окончательно доказал наличие пола у растений, а своими работами по гибридизации показал участие в оплодотворении и развитии как яйцеклеток, так и пыльцы растений (1761 и позже). В конце века итал. учёный Л. Спалланцани провёл точные опыты, опровергшие возможность самозарождения.

Идеи историч. развития органич. мира всё настойчивее возникают во 2-й пол. 18 в. Ещё нем. философ Г. В. Лейбниц провозгласил принцип градации живых существ и предсказал существование переходных форм между растениями и животными. Открытие швейц. натуралистом А. Трамбле пресноводных полипов (1744) рассматривалось как нахождение таких "зоофитов". Дальнейшее развитие принцип градации получил в идее "лестницы существ" от минералов до человека, к-рая для одних (швейц. натуралист III. Бонне, 1745, 1764) была иллюстрацией идеальной непрерывности в строении существ, а для др. (франц. философ Ж. Б. Робине, 1768; рус. писатель А. Н. Радищев, 1792-1796)-свидетельством реально происшедшего превращения живых существ. Бюффон (1749, 1778) построил смелую гипотезу об истории Земли, длительность к-рой он исчислял в 80-90 тыс. лет и делил на 7 периодов; лишь в последние периоды появляются на Земле растения, затем животные и, наконец, человек. Бюффон допускал превращение одних форм в другие под влиянием климата, почвы и питания. Мопертюи (1750) высказывал догадки о роли элиминации форм, не приспособленных к существованию.

19 век. Эволюционно истолковал "лестницу существ" франц. учёный Ж. Б. Ла-марк, нарисовав в "Философии зоологии" (т. 1-2, 1809) путь совершенствования живых существ от низших к высшим, совершающийся, как он полагал, на основе внутреннего, присущего организмам стремления к прогрессу (принцип градации). Внешняя среда вызывает отклонения от "правильной" градации и определяет приспособление видов к условиям существования либо прямым воздействием (растения и низшие животные), либо через упражнение и неупражнение органов в связи с изменением привычек (животные с нервной системой). При несомненной прогрессивности для своего времени (преодоление креационизма, обоснование эволюции живых существ под влиянием естественных причин) в понимании механизмов эволюции теория Ламарка была натурфилософской концепцией с явными элементами идеализма (внутреннее стремление к прогрессу, роль усилий животных в изменениях, всегда целесообразное и наследств, изменение признаков под прямым воздействием условий и др.) (см. Ламаркизм).

Теорию Ламарка критиковали многие, в т. ч. основоположник сравнит, анатомии и палеонтологии животных франц. учёный Ж. Кювье. Для объяснения историч. смены живых форм и исчезновения мн. из них он выдвинул учение о катастрофах, претерпеваемых органич. миром под влиянием геологич. катаклизмов (1825). Законченный креационистский характер придал катастроф теории последователь Кювье франц. биолог А. д'Орбиньи (1849). франц. учёный Э. Жоффруа Сент-Илер пытался обосновать натур-филос. учение о "единстве плана строения" животных, к-рое он в дальнейшем объяснял общностью их происхождения. По его представлениям, эволюц. изменения происходят внезапно в результате прямых воздействий внешней среды; особенно резкие изменения претерпевают животные в эмбриональный период. Эти идеи нашли отражение и во взглядах рус. учёного К. Ф. Рулье, значительно углубившего их и предвосхитившего их подлинное эволюц. истолкование. Попытки Жоффруа обосновать единый план строения животных вызвали резкую оппозицию со стороны Кювье, противопоставившего ему учение о 4 типах строения. В публичной дискуссии (1830) Кювье одержал верх, надолго утвердив во Франции антиэволюционные концепции.

Наибольшее влияние на Б. натурфилос. направления, корни к-рых уходят в 18 в., оказали в Германии. Нем. философы и естествоиспытатели также обосновывали учение о единстве плана строения организмов. Так, И. В. Гёте утверждал существование "идеи органа" и типов "прарастения" и "праживотного" (1782 -1817); Л. Окен считал, что в основе строения и развития всех живых существ лежит "пузырёк" или инфузория (1805). Наиболее плодотворной идеей нем. натурфилософов был принцип параллелизма между онтогенезом и филогенезом (К. Кильмейер, 1793; И. Меккель, 1811), ставший впоследствии отправной точкой при формулировке биогенетического закона.

Подлинное науч. подтверждение идея развития организмов нашла в эмбриологич. исследованиях рус. академиков X. И. Пандера (1817) и К. М. Бэра (1827) о зародышевых листках, в обосновании Бэром принципов сравнит, эмбриологии (1828-37) и в создании нем. биологом Т. Шванном (1839) единой для всего органич. мира клеточной теории. Учение о единстве клеточного строения всех живых существ сыграло огромную роль в развитии гистологии, эмбриологии и клеточной физиологии. На его основе простейшие были признаны одноклеточными организмами (нем. учёный К. Зибольд, 1848); нем. учёный А. Кёлликер (1844), рус.-Н. А. Варнек (1850) и особенно нем.-Р. Ремак (1851-55) разработали целлюлярную эмбриологию; нем. патолог Р.Вирхов создал "целлюлярную патологию" и провозгласил принцип "всякая клетка от клетки" (1858); нем. учёные М. Шульце и Э. Брюкке выдвинули (1861) понятие о клетке как "элементарном организме", осн. частями к-рого являются протоплазма и ядро.

Большие успехи были достигнуты в сер. 19 в. в области физиол. химии, гл. обр. благодаря трудам нем. учёного Ю. Либиха и франц. - Ж. Б. Буссенго, к-рые установили особенности питания растений и его отличие от питания животных, сформулировав принцип круговорота веществ в природе. Либих разделил все вещества, входящие в состав живых существ, на белки, жиры и углеводы, выяснил мн. хим. процессы обмена веществ, в т. ч. образование жиров из углеводов. Нем. учёный Ф. Вёлер впервые синтезировал органич. вещества - щавелевую к-ту (1824) и мочевину (1828); однако и он и Либих допускали наличие некоей "жизненной силы" как причины жизненных явлений. Необходимость этого допущения разделяли и такие крупные физиологи того времени, как нем.- И. Мюллер и нек-рые др. Полностью отказались от него лишь франц. физиолог К. Бернар и нем.- К. Людвиг, Э. Дюбуа-Реймон и Г. Гельмгольц. Бернар выяснил роль секретов различных желез в пищеварении (1843, 1847), доказал синтез гликогена в печени (1848), обосновал понятие "внутр. среды" организма и сформулировал осн. принципы экспериментальной физиологии и медицины. Людвиг, Дюбуа-Реймон и Гелъмгольц разработали осн. физиол. методы исследования нервно-мышечной системы и органов чувств. В России достойным их преемником явился И. М. Сеченов, установивший торможение спинномозговых рефлексов центрами головного мозга (1863) и заложивший основы ма-териалистич. понимания высшей нервной деятельности ("Рефлексы головного мозга").

Работы франц. учёного Л. Пастера (раскрытие роли микроорганизмов в процессах брожения, 1857-64), имевшие выдающееся значение для пищевой пром-сти, с. х-ва и др., позволили окончательно опровергнуть учение о самозарождении организмов (1860-64). В дальнейшем он показал роль микроорганизмов в инфекционных заболеваниях животных и человека, разработал меры борьбы против бешенства и сибирской язвы с помощью защитных прививок (см. Иммунитет). Природу процессов брожения, вызывавшую споры между сторонниками физико-химич. (Либих) и микробиологич. (Пастер) её объяснения, окончательно раскрыл нем. учёный Э. Бухнер, выделим из дрожжевых грибов фермент зимазу (1897). Этим было положено начало новой науке - энзимологии (см. Ферменты). Рус. врач Н. И. Лунин доказал (1881) наличие в пищевых продуктах витаминов, позже назв. так польским учёным К. Функом (1912). В кон. 19 в. были достигнуты первые успехи в изучении химии белков и нуклеиновых к-т (нем. биохимики Ф. Мишер, Э. Фишер, Э. Абдергальден и др.). Принципиальное значение для установления круговорота азота, серы и железа в природе имело обнаружение рус. микробиологом С. Н. Виноградским (1887-91) бактерий, способных образовывать путём хемосинтеза (открытого Виноградским) органические вещества из неорганических. Основоположник вирусологии Д. И. Ивановский открыл новую форму организации живого -вирусы (1892).

Крупнейшим завоеванием 19 в. было эволюционное учение Ч. Дарвина, изложенное им в труде "Происхождение видов..." (1859). Он дал опирающееся на огромное число фактов из биогеографии, палеонтологии, сравнит, анатомии и эмбриологии доказательство эволюц. развития органич. мира. Предложив теорию естественного отбора, он раскрыл и механизм органич. эволюции, дал причинный анализ движущих факторов эволюц. процесса. Огромное филос. значение дарвинизма состояло и в материалистич. разрешении проблемы органич. целесообразности. Учение Дарвина не только окончательно изгнало из Б. креационизм и телеологию, но и внедрило в мышление биологов историч. подход ко всем явлениям жизни. Это способствовало разработке ряда новых направлений в Б.: эволюционной сравнит, анатомии (нем. учёный К. Гегенбаур), эволюц. эмбриологии (рус. биологи А. О. Ковалевский, И. И. Мечников), эволюционной палеонтологии (В. О. Ковалевский). На этой же основе был сформулирован биогенетический закон (нем. учёные Ф. Мюллер, 1864; Э. Геккель, 1866 и позже) и разработан ряд филогенетич. обобщений. С развитием эволюц. учения огромный размах получили зоо- и фитогеография (англ, учёные Ф. Склетер и А. Уоллес, рус.- Н. А. Северцов и А. Н. Бекетов, нем.- А. Гризебах и А. Энглер, дат.- Э. Варминг и мн. др.). Большую роль в пропаганде дарвинизма сыграли в Англии Т. Гексли, в Германии Э. Геккель. В России крупнейший вклад в пропаганду и развитие эволюционной теории внесли К. А. Тимирязев и целая плеяда сравнит, анатомов, эмбриологов, палеонтологов (М. А. Мензбир, В. М. Шимкевич, А. Н. Северцов, П. П. Сушкин, М. В. Павлова, А. А. Борисяк и др.).

Учение о естественном отборе быстро получило самое широкое признание. Однако невыясненность закономерностей изменчивости и наследственности служила источником расхождений в толковании факторов эволюции. К кон. 19 в. возникли различные направления неодарвинизма, неоламаркизма, а также откровенно антиэволюционистские тенденции.

Попытки раскрыть механизмы наследственности умозрительно (англ, учёные Г. Спенсер, 1864, Ч. Дарвин, 1868, Ф. Гальтон, 1875; нем.- К. Негели, 1884, А. Вейсман, 1883-92; голл.- X. де Фриз, 1889, и мн. др.) не увенчались успехом. Лишь Г. Менделю удалось установить осн. закономерности наследственности (1865). Однако его работа осталась незамеченной, и лишь успехи цитологии и эмбриологии подготовили её переоткрытие (1900) и правильную оценку в 20 в. Первым шагом в этом направлении было раскрытие тонких процессов распределения хромосом при клеточном делении - митозе (франц. биолог А. Шнейдер, 1873; рус.- И. Д. Чистяков, 1874; польск.- Э. Страсбургер, 1875; нем.- В. Флемминг, 1882, и др.). Далее были выяснены процессы оплодотворения, созревания гамет и явление редукции хромосом (см. Мейоэ) сначала у животных (нем. биолог О. Гертвиг, 1875; белы.- Э. ван Бенеден, 1875-1884; нем.- Т. Бовери, 1887-1888), а затем и у растений