загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

постепенно и в очень медленном развитии - и дробных. Характерное отличие А. от арифметики заключается в том, что в А. вводится неизвестная величина; действия над ней, диктуемые условиями задачи, приводят к уравнению, из к-рого уже находится сама неизвестная. Намёк на такую трактовку арифметич. задач есть уже в др.-егип. папирусе Ахмеса (1700 - 2000 до н. э.), где искомая величина наз. словом "куча" и обозначается соответствующим знаком - иероглифом (см. Папирусы математические). Древние египтяне решали и гораздо более сложные задачи (напр., на арифметич. и геометрич. прогрессии). Как формулировка задачи, так и решение давались в словесной форме и только в виде конкретных численных примеров. И все же за этими примерами чувствуется наличие накопленных общих методов, если не по форме, то по существу равносильных решению ур-ний 1-й и иногда 2-й степеней. Имеются и первые матем. знаки (напр., особый знак для дробей).

В нач. 20 в. были расшифрованы мно-гочисл. математич. тексты (клинописи) и другой из древнейших культур - вавилонской (см. Клинописные математические тексты). Это открыло миру высоту математич. культуры, существовавшей уже за 4000 лет до наших дней. Вавилоняне с помощью обширных спец. таблиц умели решать разнообразные задачи; нек-рые из них равносильны решению квадратных уравнений и даже одного вида уравнения 3-й степени. Среди учёных, разрабатывающих историю математики, возник спор о том, в какой мере математику вавилонян можно считать А. Нельзя, однако, забывать, что древняя математика едина. Разделение произошло гораздо позднее.

В Др. Греции была отчётливо выделена геометрия. У др.-греч. геометров впервые сознательно поставлено исследование, каждый шаг к-рого оправдан логич. доказательством. Мощь этого метода так велика, что и чисто арифметич. или алгебр, вопросы переводились на язык геометрии: величины трактовались как длины, произведение двух величин - как площадь прямоугольника и т. д. И в совр. матем. языке сохранилось, напр., название "квадрат" для произведения величины на самоё себя. Характерное для более древних культур единство науч. знаний и практич. приложений было в др.-греч. математике разорвано: геометрию считали логич. дисциплиной, необходимой школой для философского ума, а всякого рода исчисления, т. е. вопросы арифметики и А., идеалистич. философия Платона не считала достойным предметом науки. Несомненно, эти отрасли также продолжали развиваться (на основе вавилонских и егип. традиций), но до нашего времени дошёл только трактат Диофанта Александрийского "Арифметика" (вероятно, 3 в.), в к-ром он уже довольно свободно оперирует с уравнениями 1-й и 2-й степеней; в зачаточной форме у него можно найти и употребление отрицат. чисел.

Наследие др.-греч. науки восприняли учёные средневекового Востока - Ср. Азии, Месопотамии, Сев. Африки. Меж-дунар. научным языком служил для них арабский яз. (подобно тому как для учёных средневекового Запада таким языком был латинский), поэтому этот период в истории математики иногда называют "арабским". В действительности же одним из крупнейших науч. центров этого времени (9-15 вв.) была Ср. Азия. Среди многих примеров достаточно назвать деятельность узб. математика и астронома 9 в., уроженца Хорезма Мухаммеда аль-Хорезми и великого учёного-энциклопедиста Бируни; создание в 15 в. обсерватории Улугбека в Самарканде. Учёные ср.-век. Востока передали Европе математику греков и индийцев в оригинальной переработке, причём особенно много они занимались именно А. Само слово "алгебра" - арабское (аль-джебр) и является началом названия одного из сочинений Хорезми (аль-джебр означало один из приёмов преобразования уравнений). Со времени Хорезми А. можно рассматривать как отдельную отрасль математики.

Математики ср.-век. Востока все действия излагали словами. Дальнейший прогресс А. стал возможным только после появления во всеобщем употреблении удобных символов для обозначения действий (см. Знаки математические). Этот процесс шёл медленно и зигзагами. Выше упоминалось о знаке дроби у древних египтян. У Диофанта буква i (начало слова isos, т. е. равный) применялась как знак равенства, были подобные сокращения и у индийцев (5-7 вв.), но затем эта зарождавшаяся символика снова терялась. Дальнейшее развитие А. принадлежит итальянцам, перенявшим в 12 в. математику ср.-век. Востока. Леонардо Пи-занский (13 в.) - наиболее выдающийся математик этой эпохи, занимавшийся алгебр, проблемами. Постепенно алгебр, методы проникают в вычислит, практику, в первое время ожесточённо конкурируя с арифметическими. Приспособляясь к практике, итал. учёные вновь переходят к удобным сокращениям, напр, вместо слов "плюс" и "минус" стали употреблять лат. буквы р и т с особой чёрточкой сверху. В кон. 15 в. в матем. сочинениях появляются принятые теперь знаки + и -, причём есть указания, что эти знаки задолго до этого употреблялись в торговой практике для обозначения избытка и недостатка в весе.

Быстро следует введение и всеобщее признание остальных знаков (степени, корня, скобок и т. д.). К сер. 17 в. полностью сложился аппарат символов совр. А.- употребление букв для обозначения не только искомого неизвестного, но и всех вообще входящих в задачу величин. До этой реформы, окончательно закреплённой Ф. Виетом (кон. 16 в.), в А. и арифметике как бы нет общих правил и доказательств; рассматриваются исключительно численные примеры. Почти невозможно было высказать какие-либо общие суждения. Даже элементарные учебники этого времени очень трудны, т. к. дают десятки частных правил вместо одного общего. Виет первый начал писать свои задачи в общем виде, обозначая неизвестные величины гласными А, Е, I,..., а известные - согласными В, С, D, .... Эти буквы он соединяет введёнными уже в то время знаками математич. операций. Т. о. впервые возникают букв, формулы, столь характерные для совр. А. Начиная с Р. Декарта (17 в.) для неизвестных употребляют преим. последние буквы алфавита (х, у, z).

Введение символич. обозначений и операций над буквами, заменяющими какие угодно конкретные числа, имело исключительно важное значение. Без этого орудия - языка формул - были бы немыслимы блестящее развитие высшей математики начиная с 17 в., создание матем. анализа, матем. выражения законов механики и физики и т. д.

Содержание А. охватывало во время Диофанта уравнения 1-й и 2-й степеней. К уравнениям 2-й степени (т. н. квадратным) др.-греч. математики пришли, по-видимому, геометрич. путём, т. к. задачи, приводящие к этим уравнениям, естественно, возникают при определении площадей и построении окружности по различным данным. Однако в одном, очень существенном отношении решение уравнений у древних математиков отличалось от современного: они не употребляли отрицательных чисел. Поэтому даже уравнение 1-й степени (с точки зрения древних) не всегда имело решение. При рассмотрении уравнений 2-й степени приходилось различать много частных случаев (по знакам коэффициентов). Решающий шаг - применение отрицательных чисел - был сделан инд. математиками (10 в.), но учёные ср.-век. Востока не пошли по этому пути. С отрицат. числами свыклись постепенно; этому особенно способствовали коммерч. вычисления, в к-рых отрицат. числа имеют наглядный смысл убытка, расхода, недостатка и т. д. Окончательно же отрицат. числа были приняты только в 17 в., после того как Декарт воспользовался их наглядным геометрич. представлением для построения аналитич. геометрии.

Возникновение аналитической геометрии было вместе с тем и торжеством А. Если раньше, у древних греков, чисто алгебр, задачи облекались в геометрич. форму, то теперь, наоборот, алгебр, средства выражения оказались уже настолько удобными и наглядными, что геометрич. задачи переводились на язык алгебр, формул. Подробнее о постепенном расширении области чисел, употребляемых в математике, о введении отрицательных, иррациональных, мнимых чисел см. в ст. Число. Здесь же надо отметить, что необходимость введения всех этих чисел особенно настоятельно ощущалась как раз в А.: так, напр., квадратные иррациональности (корни) возникают при решении уравнений 2-й степени. Конечно, уже древнегреческие и среднеазиатские математики не могли пройти мимо извлечения корней и придумали остроумные способы приближённого вычисления их; но взгляд на иррациональность как на число установился значительно позже. Введение же комплексных или "мнимых" чисел относится к следующей эпохе (18 в.).

Итак, если оставить в стороне мнимые числа, то к 18 в. А. сложилась приблизительно в том объёме, к-рый до наших дней преподаётся в средней школе. Эта А. охватывает действия сложения и умножения, с обратными им действиями вычитания и деления, а также возведение в степень (частный случай умножения) и обратное ему - извлечение корня. Эти действия производились над числами или буквами, к-рые могли обозначать положительные или отрицательные, рациональные или иррациональные числа. Указанные действия употреблялись в решении задач, по существу сводившихся к уравнениям 1-й и 2-й степеней. Теперь А. в этом объёме владеет каждый образованный человек. Эта "элементарная" А. применяется повседневно в технике, физике и др. областях науки и практики. Но содержание науки А. и её приложений этим далеко не ограничивается. Трудны и медленны были только первые шаги. С 16 в. и особенно с 18 в. начинается быстрое развитие А., а в 20 в. она переживает новый расцвет.

На рус. яз. изложение элементарной А. в том виде, как она сложилась к нач. 18 в., было впервые дано в знаменитой "Арифметике" Л. Ф. Магницкого, вышедшей в 1703.

Алгебра в 18 - 19 вв. В кон. 17 - нач. 18 вв. произошёл величайший перелом в истории математики и естествознания: был создан и быстро распространился анализ бесконечно малых (дифференциальное и интегральное исчисления). Этот перелом был вызван развитием производит, сил, потребностями техники и естествознания того времени и подготовлен он был всем предшествующим развитием А. В частности, буквенные обозначения и действия над ними ещё в 16- 17 вв. способствовали зарождению взгляда на математич. величины как на переменные, что так характерно для анализа бесконечно малых, где непрерывному изменению одной величины обычно соответствует непрерывное изменение другой - её функции.

А. и анализ развивались в 17-18 вв. в тесной связи. В А. проникали функциональные представления, в этом направлении её обогатил И. Ньютон. С другой стороны, А. принесла анализу свой богатый набор формул и преобразований, игравших большую роль в начальный период интегрального исчисления и теории дифференциальных уравнений. Крупным событием в А. этого периода было появление курса алгебры Л. Эйлера, работавшего тогда в Петерб. академии наук. Этот курс вышел сначала на рус. яз. (1768-69), а затем неоднократно издавался на иностр. языках. Отличие А. от анализа в 18-19 вв. характеризуется тем, что А. имеет своим осн. предметом прерывное, конечное. Эту особенность А. подчеркнул в 1-й пол. 19 в. Н. И. Лобачевский, назвавший свою книгу "Алгебра, или Вычисление конечных" (1834). А. занимается осн. операциями (сложение и умножение), производимыми конечное число раз.

Простейшим результатом умножения является одночлен, напр. 5а3bх2у. Сумма конечного числа таких одночленов (с целыми степенями) наз. многочленом. Если обратить внимание на одну из входящих в многочлен букв, напр, x, то можно придать ему вид: а0хn + a1xn-1 + ... + an, где коэфф. a0, a1 ..., an уже не зависят от x. Это - многочлен n-й степени (другое наименование - полином, целая рациональная функция). А. 18-19 вв. и есть прежде всего А. многочленов.

Объём А., т. о., оказывается значительно уже, чем объём анализа, но зато простейшие операции и объекты, составляющие предмет А., изучаются с большей глубиной и подробностью; и именно потому, что они простейшие, их изучение имеет фундаментальное значение для математики в целом. Вместе с тем А. и анализ продолжают иметь много точек соприкосновения, и разграничение между ними не является жёстким. Так, напр., анализ перенял от А. её символику, без к-рой он не мог бы и возникнуть. Во многих случаях изучение многочленов, как более простых функций, пролагало пути для общей теории функций. Наконец, через всю дальнейшую историю математики проходит тенденция сводить изучение более сложных функций к многочленам или рядам многочленов: простейший пример - Тейлора ряд. С др. стороны, А. нередко пользуется идеей непрерывности, а представление о бесконечном числе объектов стало господствующим в А. последнего времени, но уже в новом, спе-цифич. виде (см. ниже - Современное состояние алгебры).

Если приравнять многочлен нулю (или вообще к.-л. определённому числу), мы получим алгебр, уравнение. Исторически первой задачей А. было решение таких уравнений, т. е. нахождение их корней - тех значений неизвестной величины х, при к-рых многочлен равен нулю. С древних времён известно решение квадратного уравнения x2 + рх + q = 0 в виде формулы:

Алгебр, решение уравнения 3-й и 4-й степеней было найдено в 16 в. Для уравнения вида x3 + рх + q = 0 (к к-рому можно привести всякое уравнение 3-й степени) оно даётся формулой:

Эта формула наз. формулой Кардане, хотя вопрос о том, была ли она найдена самим Дж. Кардана или же заимствована им у др. математиков, нельзя считать вполне решённым. Метод решения алгебр, уравнений 4-й степени указал Л. Феррари. После этого начались настойчивые поиски формул, к-рые решали бы уравнения и высших степеней подобным образом, т. е. сводили бы решение к извлечениям корней ("решение в радикалах"). Эти поиски продолжались около трёх столетий, и лишь в нач. 19 в. Н. Абель и Э. Га-луа доказали, что уравнения степеней выше 4-й в общем случае в радикалах не решаются: оказалось, что существуют неразрешимые в радикалах уравнения я-й степени для любого п, большего или равного 5. Таково, напр., уравнение x5 - 4х - 2 =0. Это открытие имело большое значение, т. к. оказалось, что корни алгебр, уравнений - предмет гораздо более сложный, чем радикалы. Галуа не ограничился этим, так сказать, отрицательным результатом, а положил начало более глубокой теории уравнений, связав с каждым уравнением группу подстановок его корней. Решение уравнения в радикалах равносильно сведению первоначального уравнения к цепи уравнений вида: (к-рое и выражает собой, что Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного. Напр., через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий - сложения, вычитания, умножения и деления. В таком более широком понимании Галуа теория продолжает развиваться вплоть до нашего времени. С чисто практич. стороны для вычисления корней ур-ния по заданным коэфф. не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. Численное решение уравнений пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (напр., в астрономии и технике) и сами коэфф. обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью.

Приближённое вычисление корней алгебр, уравнений является важной задачей вычислит, математики, и к наст, времени разработано огромное число приёмов её решения, в частности с использованием совр. вычислит, техники. Но математика состоит не только из описания способов вычисления. Не менее важна - даже для приложений - другая сторона математики: уметь чисто теоретич. путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебр, уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положит, и отри-цат. числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действит. чисел; напр., уравнение x2 + 2 = 0 не может быть удовлетворено ни при каком положит, или отрицат. х, т. к. слева всегда окажется положит, число, а не нуль. Представление решения в виде не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицат. числа. Именно такого рода задачи и натолкнули математиков на т. н. мнимые числа. Ещё раньше отдельные смелые исследователи ими пользовались, но окончательно они были введены в науку только в 19 в. Эти числа оказались важнейшим орудием не только в А., но и почти во всех разделах математики и её приложений. По мере того как привыкали к мнимым числам, они теряли всякую таинственность и "мнимость", почему теперь их и называют чаще всего не мнимыми, а комплексными числами.

Если допускать и комплексные числа, то оказывается, что любое уравнение n-й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэфф. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в.франц. математиком А. Жираром, но первое строгое доказательство её было дано в самом кон. 18 в. К. Гауссом; с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство осн. теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математич. науки в целом.

Если xi - один из корней алгебр, уравнения

то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х - x,-. Из основной теоремы А. легко выводится, что всякий многочлен тг-й степени распадается на п таких множителей 1-й степени, т. е. тождественно:

причём многочлен допускает лишь одно единственное разложение на множители такого вида.

Таким образом, уравнение n-й степени имеет и корне и. В частных случаях может оказаться, что нек-рые из множителей равны, т. е. нек-рые корни повторяются несколько раз (кратные корни); следовательно, число различных корней может быть и меньше п. Часто не так важно вычислить корни, как разобраться в том, каков характер этих корней. Как пример приведём найденное ещё Декартом "правило знаков": уравнение имеет не больше положит, корней, чем число перемен знака в ряду его коэффициентов (а если меньше, то на чётное число). Напр., в рассмотренном выше уравнении xs- 4х - 2=0 одна перемена знака (первый коэфф.- положительный, остальные - отрицательные). Значит, не решая уравнения, можно утверждать, что оно имеет один и только один положит, корень. Общий вопрос о числе действительных корней в заданных пределах решается Штурма правилом. Очень важно, что у уравнения с действит. коэффициентами комплексные корни могут являться только парами: наряду с корнем а + bi корнем того же уравнения всегда будет и а - bi Приложения ставят иногда и более сложные задачи этого рода; так, в механике доказывается, что движение устойчиво, если нек-рое алгебр, уравнение имеет только такие корни (хотя бы и комплексные), у к-рых действит. часть отрицательна, и это заставило искать условия, при к-рых корни уравнения обладают этим свойством (см. Рауса - Гурвица проблема).

Многие теоретич. и практич. вопросы приводят не к одному уравнению, а к целой системе уравнений с неск. неизвестными. Особенно важен случай системы линейных уравнений, т. е. системы т уравнений 1-й степени с п неизвестными:
Здесь x1,..., хп-неизвестные, а коэфф. записаны так, что значки при них указывают на номер уравнения и номер неизвестного. Значение систем уравнений 1-й степени определяется не только тем, что они - простейшие. На практике (напр., для отыскания поправок в астро-номич. вычислениях, при оценке погрешности в приближённых вычислениях и т. д.) часто имеют дело с заведомо малыми величинами, старшими степенями к-рых можно пренебречь (ввиду их чрезвычайной малости), так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. Лейбниц (1700) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэфф. аik, и показал, как из этих коэфф. (в случае т = и) строить т. н. определители, при помощи к-рых исследуются системы линейных уравнений. Впоследствии такие таблицы, или матрицы, стали предметом самостоят, изучения, т. к. обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Теория систем линейных уравнений и теория матриц в наст, время стали частями важной отрасли науки - линейной алгебры.

(По материалам статьи А. Г. Куроша и О. Ю. Шмидта из 2-го изд. БСЭ).

Современное состояние алгебры

Сфера приложений математики расширяется с течением времени, и темп этого расширения возрастает. Если в 18 в. математика стала основой механики и астрономии, то уже в 19 в. она стала необходимой для различных областей физики, а ныне математич. методы проникают даже в такие, казалось бы далекие от математики области знания, как биология, лингвистика, социология и т. д. Каждая новая область приложений влечёт создание новых глав внутри самой математики. Эта тенденция привела к возникновению значит, числа отдельных матем. дисциплин, различающихся по областям исследования (теория функций комплексного переменного, теория вероятностей, теория уравнений матем. физики и т. д.; более новые - теория информации, теория автоматич. управления и т. д.). Несмотря на такую дифференциацию, математика остаётся единой наукой. Это единство сохраняется благодаря развитию и совершенствованию ряда общих, объединяющих идей и точек зрения. Тенденция к объединению лежит в существе математики как науки, пользующейся методом абстракции и, кроме того, часто стимулируется тем, что при исследовании задач, возникающих в различных областях знания, приходится пользоваться одним и тем же математич. аппаратом.

Совр. А., понимаемая как учение об операциях над любыми математич. объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Эту роль А. разделяет с топологией, в к-рой изучаются наиболее общие свойства непрерывных протяжённостей. А. и топология оказались, несмотря на различие объектов исследования, настолько связанными, что между ними трудно провести чёткую границу. Для совр. А. характерно то, что в центре внимания оказываются свойства операций, а не объектов, над к-рыми производятся эти операции. Попытаемся объяснить на простом примере, как это происходит. Всем известна формула (а + b)2 = а2 + 2аb + b2. Её выводом является цепочка равенств: (а + b)2 = (а + b) (а + b)=(а + b)а + (a + b)b = = (а2 + bа) + (аb + b2)= а2 + (bа + аb) + + b2 = а2 + 2ab + b2. Для обоснования мы дважды пользуемся законом дистрибутивности: с(а + b) = са + cb (роль c играет а + b) и (а + b) c = = aс + bc (роль с играют а и b), закон ассоциативности при сложении позволяет перегруппировать слагаемые, наконец используется закон коммутативности: ba = ab. Что представляют собой объекты, закодированные буквами а и b, остаётся безразличным; важно, чтобы они принадлежали системе объектов, в к-рой определены две операции - сложение и умножение, удовлетворяющие перечисленным требованиям, касающимся свойств операций, а не объектов. Поэтому формула останется верной, если а и 6 обозначают векторы на плоскости или в пространстве, сложение принимается сперва как векторное сложение, потом как сложение чисел, умножение - как скалярное умножение векторов. Вместо а и b можно подставить коммутирующие матрицы (т. е. такие, что аb = bа, что для матриц может не выполняться), операторы дифференцирования по двум независимым переменным и т. д.

Свойства операций над матем. объектами в разных ситуациях иногда оказываются совершенно различными, иногда одинаковыми, несмотря на различие объектов. Отвлекаясь от природы объектов, но фиксируя определённые свойства операций над ними, мы приходим к понятию множества, наделённого алгебраической структурой, или алгебраической системы. Потребности развития науки вызвали к жизни целый ряд содержательных алгебр, систем: группы, линейные пространства, поля, кольца и т. д. Предметом совр. А. в основном является исследование сложившихся алгебр, систем, а также исследование свойств алгебр, систем вообще, на основе ещё более общих понятий (Q-алгебры, модели). Кроме этого направления, носящего название общей А., изучаются применения алгебр, методов к др. разделам математики и за её пределами (топология, функциональный анализ, теория чисел, алгебр, геометрия, вычислит, математика, теоретич. физика, кристаллография и т. д.).

Наиболее важными алгебр, системами с одной операцией являются группы. Операция в группе ассоциативна [т. е. верно (а * b) * с = а * (b * с) при любых а, b, с из группы; звёздочкой . обозначена операция, к-рая в разных ситуациях может иметь разные названия] и однозначно обратима, т. е. для любых а и b из группы найдутся единственные х, у, такие, что а * х = b, у * а = b. Примерами групп могут служить: совокупность всех целых чисел относительно сложения, совокупность всех рациональных (целых и дробных) положит, чисел относительно умножения. В этих примерах операция (сложение в первом, умножение во втором) перестановочна. Такие группы наз. абелевыми. Совокупности движений, совмещающих данную фигуру или тело с собой, образуют группу, если в качестве операции взять последовательное осуществление двух движений. Такие группы (группы симметрии фигуры) могут быть неабе-левыми. Движения, совмещающие с собой атомную решётку кристалла, образуют т. н. фёдоровские группы, играющие основную роль в кристаллографии и через неё в физике твёрдого тела. Группы могут быть конечными (группы симметрии куба) и бесконечными (группы целых чисел по сложению), дискретными (тот же пример) и непрерывными (группа вращений сферы). Теория групп стала разветвлённой, богатой содержанием математич. теорией, имеющей обширную область приложений.

Не менее богатой приложениями является линейная А., изучающая линейные пространства. Под этим названием понимаются алгебр, системы с двумя операциями - сложением и умножением на числа (действительные или комплексные). Относительно сложения объекты (называемые векторами) образуют абелеву группу, операция умножения удовлетворяет естественным требованиям:

здесь а и b обозначают числа, х и у - векторы. Множества векторов (в обычном понимании) на плоскости и в пространстве образуют линейные пространства в смысле данного определения. Однако задачи, стоящие перед математикой, заставляют рассматривать многомерные и даже бесконечномерные линейные пространства. Последние (их элементами чаще всего являются функции) составляют предмет изучения функционального анализа. Идеи и методы линейной А. применяются в большинстве разделов математики, начиная с аналитич. геометрии и теории систем линейных уравнений. Теория матриц и определителей составляет вычислит, аппарат линейной А.

О других алгебр, системах, указанных выше, см. соответствующие статьи и литературу при них. Д.К.Фаддеев.

Лит.: История алгебры. Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966.

Классики науки. Декарт Р., Геометрия, пер. с латин., М.- Л., 1938; Ньютон И., Всеобщая арифметика, или книга об арифметических синтезе и анализе, пер. с лат., М., 1948; Эйлер Л., Универсальная арифметика, пер. с нем., т. 1 - 2, СПБ, 1768 - 69; Лобачевский Н. И., Полное собрание сочинений, т. 4 - Сочинения по алгебре, М.- Л.,1948; Галуа Э., Сочинения, пер. с франц., М.-Л., 1936.

Университетские курсы. Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Гельфанд И. М., Лекции по линейной алгебре, 3 изд., М. ,1966; Мальцев А. И., Основы линейной алгебры, М.- Л., 1948. Монографии по общим вопросам алгебры. Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1 - 2, М.- Л., 1947; Бурбаки Н., Алгебра, пер. с франц., [гл. 1-9], М., 1962 - 66; Курош А. Г., Лекции по общей алгебре, М., 1962.

Монографии по специальным разделам алгебры. Шмидт О., Абстрактная теория групп, 2 изд., М.- Л., 1933; Курош А. Г., Теория групп, 3 изд., М., 1967; Понтрягин Л. С., Непрерывные группы, 2 изд., М., 1954; Чеботарев Н. Г., Основы теории Галуа, ч. 1 - 2, М. -Л., 1934 - 37; Джекобсон Н., Теория колец, пер. с англ., М., 1947.

АЛГЕБРА ЛОГИКИ, раздел матем. логики, изучающий высказывания, рассматриваемые со стороны их логич. значений (истинности или ложности), и логич. операции над ними. А. л. возникла в сер. 19 в. в трудах Дж. Буля и развивалась затем в работах Ч. Пирса, П. С. Порецкого, Б. Рассела, Д. Гильберта и др. Соз-д-шие А. л. представляло собой попытку решать традиционные логич. задачи алгебр, методами. С появлением теории множеств (70-е гг. 19 в.), поглотившей ччсть первоначального предмета А. л., и дальнейшим развитием матем. логики (последняя четверть 19 в.- 1-я пол. 20 в.) предмет А. л. значительно изменился. Основным предметом А. л. стали высказывания. Под высказыванием понимается каждое предложение, относительно к-рого имеет смысл утверждать, истинно оно или ложно. Примеры высказываний: "кит - животное", "все углы - прямые" и т. п. Первое из этих высказываний является, очевидно, истинным, а второе - ложным. Употребляемые в обычной речи логич. связки "и", "или", "если..., то...", "эквивалентно", частица "не" и т. д. позволяют из уже заданных высказываний строить новые, более "сложные" высказывания. Так, из высказываний "x > 2", *x<=3" при помощи связки "и" можно получить высказывание "x>2 и x<=З", при помощи связки "или" - высказывание "x>2 или x<=3", при помощи связки "если..., то..." - высказывание "если x>2, то x<=3" и т. д. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями.

Связки. Формулы. В А. л. для обозначения истинности вводится символ И и для обозначения ложности - символ Л. Часто вместо этих символов употребляются числа 1 и 0. Связки "и", "или", "если..., то...", "эквивалентно" обозначаются соответственно знаками & (конъюнкция), V (дизъюнкция), -> (импликация), ~ (эквивалентность); для отрицания вводится знак - (чёрточка сверху). Наряду с индивидуальными высказываниями, примеры к-рых приводились выше, в А. л. используются также т. н. переменные высказывания, т. е. такие переменные, значениями к-рых могут быть любые наперёд заданные индивидуальные высказывания. Далее индуктивно вводится понятие формулы, являющееся формализацией понятия "сложного" высказывания; через А, В, С,... обозначаются индивидуальные, а через X, У, Z ,...- переменные высказывания. Каждая из этих букв наз. формулой. Если знаком * обозначить любую из перечисленных выше связок, а исуть формулы, то суть формулы. Пример формулы: ( (Х&У) -> Z). Связки и частица "ие" рассматриваются в А. л. как операции над величинами, принимающими значения 0 и 1, и результатом применения этих операций также являются числа О или 1. Конъюнкция Х&У равна 1 тогда и только тогда (т. и т. т.), когда и X и Y равны 1; дизъюнкция XV У равна О т. и т. т., когда и X и У равны 0; импликация X -> У равна 0 т. и т. т., когда X равно 1, а У равно 0; эквивалентность X ~ У равна 1 т. и т. т., когда значения X и У совпадают; отрицание X равно 1 т. и т. т., когда X равно 0. Введённые операции позволяют каждой формуле при заданных значениях входящих в неё высказываний приписать одно из двух значений 0 или 1. Тем самым каждая формула может одновременно рассматриваться как нек-рый способ задания или реализации т. н. функций А. л., т. е. таких функций, к-рые определены на наборах нулей и единиц и к-рые в качестве значений принимают также. О или 1. Для задания функций А. л. иногда используются таблицы, содержащие все наборы значений переменных и значения функций на этих наборах. Так, напр_._, сводная таблица, задающая функции X, Х&У, XVY, Х-"У и Х~У имеет вид:






00

1

0

0

1

1
01

1

0

1

1

0
10

0

0

1

0

0
11

0

1

1

1

1

Аналогично устроены таблицы для произвольных функций А. л. Это - т. н. табличный способ задания функций А. л. Сами же таблицы иногда называют истинностными таблицами.

Для преобразований формул в равные формулы важную роль в А. л. играют следующие равенства:

(закон коммутативности);

(закон ассоциативности); (3)

(закон поглощения); (4) = (закон дистрибутивности); (закон противоречия); (6) (закон исключённого третьего);
(7)


Эти равенства, устанавливаемые, напр., с помощью истинностных таблиц, позволяют уже без помощи таблиц получать др. равенства. Методом получения последних являются т. н. тождественные преобразования, к-рые меняют, вообще говоря, выражение, но не функцию, реализуемую этим выражением. Напр., при помощи законов поглощения получается закон идемпотентности Упомянутые равенства в ряде случаев позволяют существенно упростить запись формул освобождением от "лишних скобок". Так, соотношения (1) и (2) дают возможность вместо формул

и использовать более компактную запись и Первое из этих выражений наз. конъюнкцией сомножителей

а второе - дизъюнкцией слагаемых . Равенства (5), (6), (7) показывают также, что константы 0 и 1, импликацию и эквивалентность, рассматривая их как функции, можно выразить через конъюнкцию, дизъюнкцию и отрицание. Более того, всякая функция А. л. может быть реализована формулой, записываемой с помощью символов

Нормальные формы. Множество всех формул, в построении к-рых участвуют переменные высказывания, нек-рые из символов и констант 0 л 1, наз. языком над данными символами и константами. Равенства (1) - (7) показывают, что для всякой формулы в языке над найдётся равная ей формула в языке над напр.

Особую роль в последнем языке играет класс формул, к-рые могут быть записаны в виде 0 или 1, где и каждое - либо переменное высказывание, либо его отрицание, либо конъюнкция таковых, при этом каждое не содержит одинаковых сомножителей и не содержит сомножителей вида одновременно и все - попарно различны. Здесь скобки опускаются, т. к. предполагается, что операция конъюнкции связывает "сильнее", чем дизъюнкция, т. е. при вычислении по заданным значениям переменных следует сначала вычислить значения Эти выражения наз. дизъюнктивными нормальными формами (днф). Каждую формулу реализующую функцию, отличную от константы, в языке над при помощи равенств (1) - (7) можно привести к равной ей днф, содержащей все переменные формулы и любое число других переменных, причем каждое в этой днф содержит одни и те же переменные. Такая днф наз. совершенной днф формулы . Возможность приведения к совершенной днф лежит в основе алгоритма, устанавливающего Равенство или неравенство двух наперёд заданных формул.

Важную роль в А. л. и её приложениях играет т. н. сокращённая днф. Днф наз. сокращённой, если выполнены

следующие условия:1 1) в ней нет таких пар слагаемых и что всякий сомножитель из имеется ив; 2) для всяких двух таких слагаемых и , из к-рых один содержит сомножителем нек-рое переменное, а другой - отрицание этого переменного (при условии, что в данной паре слагаемых нет другого переменного, для к-рого это же имеет место), имеется (в этой же днф) слагаемое, равное конъюнкции остальных сомножителей этих двух слагаемых. Всякая днф при помощи равенства (1) - (7) может быть приведена к равной ей сокращённой днф. Напр., сокращённой днф для формулы является

Кроме днф, употребляются также конъюнктивные нормальные фор-мы(кнф). Так называют выражения, к-рые можно получить из днф путём замены в них знаков на &, а & на . Напр., из_ днф

получается кнф

Операция (или функция) f наз. двойственной для операции , если таблица, задающая f, получается из таблицы, задающей , путём замены в ней всюду 0 на 1 и 1 на 0 (включая замену значений функций). Напр., конъюнкция и дизъюнк-ция двойственны между собой, отрицание двойственно самому себе, константы 1 и О двойственны друг другу и т. д. Преобразованием формул, при к-ром знаки всех операций в выражении заменяются на знаки двойственных им операций, константа О заменяется на 1, а 1 - на 0, наз. преобразованием двойственности. Если верно равенство и двойственно , а двойственно 33, то верно , называемое двойственным предыдущему. Это т. н. принцип двойственности. Примерами двойственных равенств являются пары законов (1), (2), (3); равенство (5) двойственно равенству (6), каждая кнф двойственна нек-рой днф. Совершенная кнф и сокращённая кнф определяются как такие кнф, что двойственные им выражения являются соответственно совершенной днф и сокращённой днф.

Следствия. Гипотезы. Минимизация. Совершенные и сокращённые днф и кнф используются для решения задачи обзора всех гипотез и всех следствий заданной формулы. Под гипотезой формулы понимается такая формула , что , а под следствием формулы - такая формула , что Гипотеза формулыназ. простой, если она есть конъюнкция переменных или их отрицаний и после отбрасывания любого из её сомножителей перестаёт быть гипотезой формулы . Аналогично, следствие формулы наз. простым, если оно есть дизъюнкция переменных или их отрицаний и после отбрасывания любого из её слагаемых перестаёт быть следствием формулы . Решение задачи обзора гипотез и следствий основано на указании алгоритма, строящего все простые гипотезы и следствия для заданной формулы и в получении из них при помощи законов (2) - (7) всех остальных гипотез и следствий.

Сокращённая днф имеет важные приложения. Следует отметить прежде всего задачу минимизации функций А. л., являющуюся частью т. н. задачи синтеза управляющих систем. Минимизация функций А, л, состоит в построении такой днф для заданной функции А. л., к-рая реализует эту функцию и имеет наименьшее суммарное число сомножителей в своих слагаемых, т. е. имеет минимальную "сложность". Такие днф наз. минимальными. Каждая минимальная днф для заданной отличной от константы функции А. л. получается из сокращённой днф любой формулы, реализующей эту функцию, выбрасыванием нек-рых слагаемых из этой сокращённой днф.

Языки. Интерпретации. В языке над &, где знак интерпретируется как сложение по модулю два, устанавливаются следующие соотношения:

Эти равенства позволяют переводить формулы в языке над в равные им формулы в языке над . и обратно. Тождественные преобразования в последнем языке осуществляются при помощи равенств, установленных для конъюнкции

таетcя, что конъюнкция связывает "сильнее", чем знак +. Этих равенств достаточно для того, чтобы из них при помощи тождественных преобразований, так же как и при рассмотрении языка над

можно было вывести люОое верное равенство в языке над Выражение в этом языке наз. приведённым полиномом (п.п.), если оно либо имеет вид

где каждое есть или или переменное, или конъюнкция различных переменных без отрицаний, при и либо равно. Напр., выражение является п. п. Всякую формулу А. л. можно привести к п. п.

Кроме рассмотренных языков, существуют и др. языки, равносильные им (два языка наз. равносильными, если при помощи нек-рых правил преобразования каждая формула одного из этих языков переводится в нек-рую равную ей формулу в другом языке и обратно). В основу такого языка достаточно положить любую систему операций (и констант), обладающую тем свойством, что через операции (и константы) этой системы можно представить всякую функцию А, л. Такие системы наз. функционально полными-. Примерами полных систем являются

и т. п.Существует алгоритм, к-рый по произвольной конечной системе функций А. л. устанавливает её полноту или неполноту. Рассматриваются и такие языки, в основе к-рых лежат системы операций, не являющихся функционально полными, и таких языков бесконечно много. Среди них имеется бесконечно много попарно неравносильных языков (в смысле отсутствия переводимости при помощи тождественных преобразований с одного языка на другой). Однако для всякого языка, построенного на основе тех или иных операций А. л., существует такая конечная система равенств этого языка, что всякое равенство этого языка выводимо при помощи тождественных преобразований из равенств этой системы. Такая система равенств наз. дедуктивно полной системой равенств (п. с. р.) языка.

Рассматривая тот или иной из упомянутых выше языков вместе с нек-рой п. с. р. этого языка, иногда отвлекаются от табличного задания операций, лежащих в основе этого языка, и от того, что значениями его переменных являются высказывания. Вместо этого допускаются различные интерпретации языка, состоящие из той или иной совокупности объектов (служащих значениями переменных) л системы операций над объектами этого множества, удовлетворяющих равенствам из п. с. р. этого языка. Так, язык над в результате такого шага превращается в язык т. н. булевой алгебры, язык над превращается в язык т. н. булевого кольца (с единицей), язык над в язык дистрибутивной структуры и т. п.

А. л. развивается гл. обр. под влиянием задач, встающих в области её приложений. Из них самую важную роль играют приложения А. л. в теории электрич. схем. Для описания последних в нек-рых случаях приходится отказываться от пользования лишь обычной двузначной А. л. и рассматривать те или иные её многозначные обобщения (см. Многозначная логика).

Лит.: Гильберт Д. и Аккер-м а н Б., Основы теоретической логики, пер. с нем., М., 1947; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с ан гл., М., 1948; К л и-н и С. К., Введение в метаматематику, пер. с англ., М., 1957; Новиков П. С., Элементы математической логики, М., 1959. В. Б. Кудрявцев.

АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ, раздел математики, изучающий алгебраические многообразия. Так называются множества точек в я-мерном пространстве, координаты которых (x1, х2,...,хп ) являются решениями системы уравнений:

где Fit..., Fm - многочлены от неизвестных x1, x2, .., xп Каждое алгебр, многообразие имеет определённую размерность, к-рая является числом независимых параметров, определяющих точку на многообразии. Алгебр, многообразия, имеющие размерность 1, наз. алгебраическими кривыми, имеющие размерность 2 - алгебраическими поверхностями. Примерами алгебр, кривых могут служить конические сечения.

Два алгебр, многообразия наз. бирационально эквивалентным и, если координаты каждой точки одного многообразия выражаются при помощи рациональных функций через координаты точки другого многообразия, и наоборот. В А. г. алгебр, многообразия обычно изучаются с точностью до бирациональной эквивалентности, поэтому одной из осн. задач А. г. является построение бирациональных инвариантов для алгебр, многообразий. Наиболее важные из известных бирациональных инвариантов строятся с помощью средств матем. анализа (т. н. трансцендентных методов), в особенности при помощи кратных интегралов по алгебр, многообразию. Кроме трансцендентных методов, в А. г. часто применяются геометрич. методы проективной геометрии, а также топология, методы (см. Топология). Последнее вызвано тем, что некоторые важные бирациональные инварианты, напр, род кривой (см. ниже), алгебр, многообразий носят топологич. характер. Особенно большую роль играет связь А. г. с топологией в свете теоремы япон. математика Хиронака, согласно к-рой всякое алгебр, многообразие бирационально эквивалентно многообразию, не имеющему особых точек.

Наиболее разработанная часть А. г. - теория алгебр- кривых. Основным бира-циональным инвариантом алгебр, кривой является её род. Если алгебр, кривая плоская, т. е. задаётся в декартовых координатах ур-нием F(x, у) = 0, то род кривой g = (m -l)(m -2)/2 - d, где m - порядок кривой, ad - число её двойных точек. Род кривой всегда есть целое неотрицательное число. Кривые рода нуль бирацио-нально эквивалентны прямым, т. е, параметрически могут быть заданы при помощи рациональных выражений. Кривые рода 1 могут быть параметризованы эллиптическими функциями и поэтому наз. эллиптич. кривыми. Кривые рода больше 1 могут быть параметризованы с помощью автоморфных функций. Каждая кривая рода g, большего 1, с точностью до бирациональной эквивалентности однозначно определяется 3g - 3 комплексными параметрами, к-рые сами пробегают нек-рое алгебр-многообразие.

В многомерном случае наиболее изученный класс алгебр, многообразий образуют абелевы многообразия. Это - замкнутые подмногообразия проективного пространства, являющиеся одновременно группами, причём так, что умножение задаётся рациональными выражениями. Умножение на таком многообразии автоматически оказывается коммутативным. Алгебр, кривая является абе левым многообразием тогда и только тогда, когда она имеет род 1, т. е. является эллиптич. кривой.

Теория алгебр, кривых и теория абелевых многообразий тесно связаны между собой. Всякая алгебр, кривая рода, большего 0, канонически погружается в нек-рое абелево многообразие, наз. якобиевым многообразием для данной кривой. Якобиево многообразие является важным инвариантом кривой и почти полностью определяет самоё кривую.

Исторически А. г. возникла из изучения кривых и поверхностей низких порядков. Классификация кривых третьего порядка была дана И. Ньютоном (1704). В 19 в. А. г. постепенно переходит от изучения спец. классов кривых и поверхностей к постановке общих проблем, относящихся ко всем многообразиям. Общая А. г. была построена в кон. 19 и нач. 20 вв. в трудах нем. математика М. Нётера, итал. математиков Ф. Энрикеса, Ф. Севе-ри и др. Своего расцвета А. г. достигает в 20 в. (работы франц. математика А. Вей-ля, амер. математика С. Лефшеца и др.). Крупные достижения в А. г. имеют сов. математики Н. Г. Чеботарёв, И. Г. Петровский, И. Р. Шафаревич.

А. г. является одним из наиболее интенсивно развивающихся разделов математики. .Методы А. г. оказывают огромное влияние на такие смежные с А. г. разделы математики, как теория функций многих комплексных переменных, теория чисел, а также на более далёкие от А. г. разделы математики - такие, как уравнения в частных производных, алгебр, топология, теория групп и др.

Лит.: Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., [2 изд.], ч. 1 - 2, М.- Л., 1947; Чеботарёв Н. Г., Теория алгебраических функций, М.- Л., 1948; ХоджВ., ПидоД., Методы алгебраической геометрии, пер. с англ.,т. 1 - 3, М., 1954 - 55; Алгебраические поверхности, М., 1965; W e i I A., Foundations of algebraic geometry, N. Y., 1946.

Б. Б. Венков.

АЛГЕБРАИЧЕСКАЯ КРИВАЯ, кривая, задаваемая в декартовых координатах алгебр, уравнением. См. Алгебраическая геометрия.

АЛГЕБРАИЧЕСКАЯ ПОВЕРХНОСТЬ, поверхность, задаваемая в декартовых координатах алгебр, уравнением. См. Алгебраическая геометрия.

АЛГЕБРАИЧЕСКАЯ ФУНКЦИЯ, функция, удовлетворяющая алгебраическому уравнению. А. ф. принадлежат к числу важнейших функций, изучаемых в математике. Из них многочлены и частные много

рациональными, а прочие А. ф.- иррациональными. Простейшими примерами последних могут служить А. ф., выражаемые с помощью радикалов [напр.,

. Однако существуют А. ф., к-рые невозможно выразить через радикалы [напр., функция у = f (x), удовлетворяющая ур-нию: у5 + 5ух4 + + 5x5 = 0]. Примерами неалгебр., т. н. трансцендентных функций, встречающихся в школьном курсе алгебры, являются: степенная хa (если а - иррациональное число), показательная аx, логарифмическая и т. д. Общая теория А. ф. представляет обширную математич. дисциплину, имеющую важные связи с теорией аналитических функций (А. ф. составляют спец. класс аналитич. функций), алгеброй и алгебраической геометрией. Самая общая А. ф. многих переменных u =f(x, у, z,...) определяется как функция, удовлетворяющая ур-нию вида:

где - какие-либо многочлены относительно х, у, z,... . Всё выражение, стоящее в левой части, представляет нек-рый многочлен относительно x, у, z,... и u. Его можно считать неприводимым, т. е. не разлагающимся в произведение многочленов более низких степеней; кроме того, многочлен Р0 можно считать не равным тождественно нулю. Если п - 1, то и представляет рациональную функцию (u = -P1/Р0), частным случаем к-рой - целой рациональной функцией - является многочлен (если P0=const <> 0). При n>1 получается иррациональная функция; если п = 2, то она выражается через многочлены с помощью квадратного корня; если п = 3 или п = 4, то для и получается выражение, содержащее квадратные и кубич. корни.

При n>= 5 иррациональная функция и уже не может быть выражена (в общем случае) через конечное число каких бы то ни было корней из многочленов. Иррациональная А. ф. всегда многозначна, а именно (при наших обозначениях и предположениях) является n-значной аналитич. функцией переменных х, у, z,...

Лит.: Чеботарёв Н. Г., Теория алгебраических функций, М.- Л., 1948.

АЛГЕБРАИЧЕСКОЕ ВЫРАЖЕНИЕ, выражение, составленное из букв и цифр, соединённых знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня (показатели степени и корня должны быть постоянными числами). А. в. наз. рациональным относительно нек-рых букв, в него входящих, если оно не содержит их под знаком извлечения корня, напр. рационально относительно а, b и с. А. в. наз. целым относительно нек-рых букв, если оно не содержит деления на выражения, содержащие эти буквы, напр. За/с + Ьс2 - Зас/4 является целым относительно а и b. Если нек-рые из букв (или все) считать переменными, то А. в. есть алгебраическая функция.

АЛГЕБРАИЧЕСКОЕ ДОПОЛНЕНИЕ, см. в ст. Определитель.

АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ, уравнение, получающееся при приравнивании двух алгебраических выражений. А. у. с одним неизвестным наз. д р о 6 н ы м, если неизвестное входит в знаменатель, и иррациональным, если неизвестное входит под знаком радикала. Всякое А. у. может быть преобразовано без потери корней к виду a0x" + atx"~l + + ... + а„ = 0. О решении таких ур-ний см. Алгебра и Численное решение уравнений. Д. К. Фаддеев.

АЛГЕБРАИЧЕСКОЕ ЧИСЛО, число а, удовлетворяющее алгебр. уравнению

где n<=1,

- целые (рациональные) числа. Число а наз. целым А. ч., если a1 = 1. Если многочлен

не является произведением двух др. многочленов положит, степени с рациональными коэфф., то число n наз. степенью А. ч. а. Простейшие А.ч.- корни двучленного ур-ния xn= a, где а-рациональное число. Напр., А. ч. будут рациональные числа, числа целыми А. ч. будут целые числа, числа

С понятием А. ч. тесно связаны два больших направления в теории чисел. 1) Арифметика А. ч. (алгебр.теория чисед), созданная Э. Куммером в сер. 19 в., изучает свойства А. ч. Целые А. ч. обладают рядом свойств, аналогичных свойствам целых рациональных чисел, однако теорема об единственности разложения числа на простые множители не имеет места в теории целых А. ч. Для сохранения единственности разложения Куммер ввёл в рассмотрение т. н. "идеальные" числа (см. Идеал). 2) Теория приближения А. ч. изучает степень приближения А. ч. рациональными числами или алгебр, же числами. Первым результатом в этом направлении была теорема Ж. Лиувилля, показывающая, что А. ч. "плохо" приближаются рациональными числами, точнее: если а - А. ч. степени п, то при любых целых рациональных р и q имеет место неравенство , где С= =-постоянная, не зависящая от р и q; отсюда следует, что легко построить произвольное количество неалгебраических - трансцендентных чисел.

Лит.: Гекке Э., Лекции по теории алгебраических чисел, пер. с нем., М.- Л., 1940; Гельфонд А. О., Трансцендентные и алгебраические числа, М., 1952; Боревич 3. И., Шафаревич И. Р., Теория чисел, М., 1964. А. А. Карациба.

АЛГЕБРЫ ОСНОВНАЯ ТЕОРЕМА, название теоремы о существовании комплексных корней алгебр. уравнения aaxn + aixn-1+ ... + ап = 0 с комплексными коэффициентами. См. Алгебра.

АЛГОЛ, сокращённое назв. ряда языков программирования. Образовано из начальных букв англ, слов algorithmic (алгоритмический) и language (язык). Разработан группой учёных разных стран в 1958-60. Окончат, вид языка, принятый на междунар. конференции в Париже (янв. 1960), получил назв. "Алгол-60" (в отличие от первоначального вида, названного "Алгол-58").

Осн. символами А. являются десятичные цифры, строчные и заглавные лат. буквы, знаки препинания, знаки матем. и логич. операций, прочие спец. знаки и нек-рые англ, слова (в частности, begin и end). Из осн. символов в А. по определённым правилам образуются конструкции - числа и выражения (арифметич., логич. и др.), описания, примечания и операторы, к-рые, в свою очередь, в сочетании с осн. символами образуют более сложные операторы и т. д. Алгоритм, заданный на А., наз. алгол-программой. С помощью спец. программы он преобразуется в программу на языке конкретной цифровой вычислит, машины.

Лит.: Алгоритмический язык АЛГОЛ-60, пер. с англ., М., 1965; Лавров С. С., Универсальный язык программирования (АЛГОЛ-60), 2 изд., М., 1967.

АЛГОЛЬ, В - Персея, затменная переменная звезда, переменность к-рой открыта в 1669. Блеск А. изменяется от 2,2 до 3,5 визуальной звёздной величины с периодом 2,867 суток. Расстояние от Солнца - 36 парсек. Переменные звёзды с кривой изменения блеска, как у А., составляют класс звёзд типа Алголя.

АЛГОНКИНСКИЕ ЯЗЫКИ, одна из основных семей языков североамериканских индейцев. В результате истребления племён А. я. сохранились лишь в немногих местах в США и Канаде, гл. обр. в р-не Великих озёр и южнее. Распадаются на 5 осн. групп: языки т. н. "черноногих" индейцев; чейенн; арапахо; центральная и восточная группы; калифорнийская группа. Наиболее обширны центр, н вост. группы, к к-рым относятся языки собственно алгонкинский, оджибве, оттава (в р-не оз. Верхнего и Гурон), кри (на Лабрадоре), делаварский (в Пенсильвании и в штатах Нью-Йорк и Нью-Джерси), фоке (долина Миссисипи), а также ныне исчезнувшие языки могикан, массачусет-ский и др. Языки т. н. "черноногих" индейцев (блэкфут) распространены в Канаде, у подножия Скалистых гор и в сев. части Монтаны; шейен - в ю.-в. части Миннесоты и с.-в. части Юж. Дакоты; арапахо - в вост. части Сев. Дакоты и в юж. части Монтаны; калифорнийская группа (Калифорния) представлена двумя языками - вийот и юрок. В грамматич. отношении А. я. характеризуются ярко выраженной инкорпорацией (см. Инкорпорирующие языки). В А. я. элементы, соответствующие второстепенным членам предложения, зависящие от глагольного сказуемого, входят в состав последнего как морфы, в результате чего одна словоформа соответствует целому предложению.

Лит.: Boas Fr.. Handbook of American Indian languages, pt 1, Wash., 1911; Pilling J. C., Bibliography of the Algonquian languages, Wash., 1891.

АЛГОНКИНЫ, группа родств. но языку (см. Алгонкинские языки) индейских племён, древнейших насельников Сев. Америки, охотников, рыболовов и ранних земледельцев, живших в прошлом на большом пространстве от Атлантич. побережья до Скалистых гор. Территориально различаются 4 группы А.: сев.-восточная (кри, монтанье, наскапи, мик-маки и др.); приатлантическая (абенаки, наррагансеты, массачусеты, поухатаны и др.), почти полностью уничтоженная на первых же этапах колонизации материка европейцами; центральная (могиканы, делавары, Майами, иллинойсы, отта-вы, оджибве, шауни, собств. алгонкины, меномини и др.), оставившая о себе память в топонимике; западная ("черноно-гие", чейенны, арапахо, ацина). Остатки алгонкинских племён разбросаны по резервациям США (100 тыс. чел.) и Канады (75 тыс. чел.; 1961). К А.в языковом отношении близки племена Тихоокеанского побережья Сев. Америки селиши (числ. в США 12 тыс. чел., в Канаде 15 тыс. чел.) и вакаши (в Канаде 6 тыс. чел.).

Лит.: Народы Америки, т. 1, М., 1959. Ю. П. Аверкиева.

АЛГОРИТМ, алгорифм, одно из основных понятий (категорий) математики, не обладающих формальным определением в терминах более простых понятий, а абстрагируемых непосредственно из опыта. А. являются, напр., известные из начальной школы правила сложения, вычитания, умножения и деления столбиком. Вообще, под А. понимается всякое точное предписание, к-рое задаёт вычислительный процесс (наз. в этом случае алгоритмически м), начинающийся с произвольного исходного данного (из нек-рой совокупности возможных для данного А. исходных данных) и направленный на получение полностью определяемого этим исходным данным результата; напр., в упомянутых А. арифметич. действий возможными результатами могут быть натуральные числа, записанные в десятичной системе, а возможными исходными данными - упорядоченные пары таких чисел. В содержание предписания, т. о., помимо инструкции по развёртыванию алгорит-мич. процесса, должно входить также: 1) указание совокупности возможных исходных данных (в. и. д.) и 2) правило, по к-рому процесс признаётся закончившимся ввиду достижения результата.

Не предполагается, что результат будет обязательно получен: процесс применения А. к конкретному в. и. д. (т. е. алго-ритмич. процесс, развёртывающийся начиная с этого данного) может также оборваться безрезультатно или не закончиться вовсе. В случае, если процесс заканчивается (соответственно не заканчивается) получением результата, говорят, что А. применим (соответственно неприменим) к рассматриваемому в. и. д. (Можно построить такой А. , для к-рого не существует А., распознающего по произвольному возможному для Я исходному данному, применим к нему Я или нет; такой А. можно, в частности, построить так, чтобы совокупностью его в. и. д. служил натуральный ряд.)

Понятие А. занимает одно из центральных мест в совр. математике, прежде всего вычислительной. Так, проблема численного решения уравнений данного типа сводится к отысканию А., к-рый всякую пару, составленную из произвольного уравнения этого типа и произвольного рационального числа , перерабатывает в число (или набор чисел) меньше, чем на , отличающееся (отличающихся) от корня (корней) этого уравнения. Усовершенствование вычислит, машин даёт возможность реализовать на них всё более сложные А. Однако встретившийся в описывающей понятие А. формулировке термин "вычислительный процесс" не следует понимать в узком смысле только цифровых вычислений. Так, уже в школьном курсе алгебры говорят о буквенных вычислениях, да и в арифметич. вычислениях появляются отличные от цифр символы: скобки, знак равенства, знаки арифметич. действий. Можно пойти дальше и рассматривать вычисления с произвольными символами и их комбинациями; именно таким широким пониманием пользуются при описании понятия А. Так, можно говорить об А. перевода с одного языка на другой, об А. работы поездного диспетчера (перерабатывающего информацию о движении поездов в приказы) и др. примерах алгоритмич. описания процессов управления; именно поэтому понятие А. является одним из центральных понятий кибернетики. Вообще, исходными данными и результатами А. могут служить самые разнообразные конструктивные объекты; напр., результатами т. н. распознающих А. служат слова "да" и "нет".

Пример алгоритма. В. и. д. и возможными результатами пусть служат всевозможные конечные (в т. ч. пустая) последовательности букв а и b ("слова в алфавите {а, b}"). Условимся называть переход от слова X к слову Y "допустимым" в следующих двух случаях (ниже Р обозначает произвольное слово);

1) X имеет вид аР, а Y имеет вид Pb;

2) X имеет вид baP, а Y имеет вид Раbа. Формулируется предписание: "взяв к.-л. слово в качестве исходного, делай допустимые переходы до тех пор, пока не получится слово вида ааР; тогда остановись, слово Р и есть результат". Это предписание образует А., к-рый обозначим через С. Возьмём в качестве исходного данного слово babaa. После одного перехода получим bаааЬа, после второго aabaaba. В силу предписания мы должны остановиться, результат есть baaba. Возьмём в качестве исходного данного слово baaba. Получим последовательно аbааbа, baobab, abababa, bababab, babababa, ... Можно доказать, что процесс никогда не кончится (т. е. никогда не возникает слово, начинающееся с аа, и для каждого из получающихся слов можно будет совершить допустимый переход). Возьмём теперь в качестве исходного дан-

ного слово abaab. Получим baabb, abbaba, bbabab. Далее мы не можем совершить допустимый переход, и в то же время нет сигнала остановки. Произошла т. н. "безрезультативная остановка". Итак, С применим к слову babaa и неприменим к словам baaba и abaab.

Значение А. А. в науке встречаются на каждом шагу; умение решать задачу "в общем виде" всегда означает, по существу, владение нек-рым А. Говоря, напр., об умении человека складывать числа, имеют в виду не то, что он для любых двух чисел рано или поздно сумеет найти их сумму, а то, что он владеет нек-рым единообразным приёмом сложения, применимым к любым двум конкретным записям чисел, т. е., иными словами, А. сложения (примером такого А. и является известное правило сложения чисел столбиком). Понятие задачи "в общем виде" уточняется при помощи понятия массовая проблема (м. п.). М.п. задаётся серией отдельных, единичных проблем и состоит в требовании найти общий метод (то есть А.) их решения. Так, проблема численного решения уравнений данного типа и проблема автоматич. перевода суть м. п.: образующими их единичными проблемами являются в 1-м случае проблемы численного решения отдельных уравнений данного типа, а во 2-м случае - проблемы перевода отдельных фраз. Ролью м. п. и определяется как значение, так и сфера приложения понятия А. М. п. чрезвычайно характерны н важны для математики: напр., в алгебре возникают м. п. проверки алгебр, равенств различных типов, в матем. логике - м. п. распознавания выводимости предложений из заданных аксиом и т. п. (для матем. логики понятие А. существенно ещё и потому, что на него опирается центральное для матем. логики понятие исчисления, служащее обобщением и уточнением интуитивных понятий "вывода" и "доказательства"). Установление неразрешимости к.-л. массовой проблемы (напр., проблемы распознавания истинности или доказуемости для к.-л. логико-матем. языка), т. е. отсутствия единого А., позволяющего найти решения всех единичных проблем данной серии, является важным познават. актом, показывающим, что для решения конкретных единичных проблем принципиально необходимы специфические для каждой такой проблемы методы. Существование неразрешимых м. п. служит, т. о., проявлением неисчерпаемости процесса познания.

Содержательные явления, к-рые легли в основу образования понятия "А.", издавна занимали важное место в науке. С древнейших времён мн. задачи математики заключались в поисках тех или иных конструктивных методов. Эти по