загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

х Прутского похода 1711 А. ф. был уничтожен в связи с возвращением Азова туркам. Создание А. ф. положило начало рус. регулярному воен. флоту.

Лит.: Никульченков К., Создание Азовского воен. флота, "Морской сборник", 1939, №6; Елагин С., История русского флота. Период Азовский. Приложения, ч. 1 - 2, СПБ, 1864; История воен.-мор. иск-ва, т. 1, М., 1953.

АЗОВСКОЕ, посёлок гор. типа в Джан-койском р-не Крымской обл. УССР. Ж.-д. ст. Азовская на линии Джанкой - Феодосия. 5 тыс. жит. (1968). Заводы углекислотный, винный, молочный и др.

АЗОВСКОЕ КАЗАЧЬЕ ВОЙСКО, образовано в 1828 из части потомков запорожцев, переселившихся после уничтожения Сечи Запорожской (1775) в Турцию и возвратившихся в рус. подданство в нач. рус.-тур. войны 1828-29 во главе с кошевым атаманом О. М. Гладким. После активного участия казаков в войне из них было образовано Отд. запорожское войско, переименованное в 1831 в А. к. в. Последнее было поселено на сев.-зап. побережье Азовского м. в Ека-теринославской губ. (между морем и pp. Бердей, Обиточной). Численность с семьями составляла в конце 30-х гг. ок. 6 тыс. чел. На обязанности войска лежало наблюдение за вост. побережьем Чёрного м. с помощью вооруж. флотилии из 29 мелких судов, а также 10 конных сотен. Подчинялось ген .-губернатору Новорос-сии, внутр. управление находилось в руках наказного атамана и войскового правления (в станице Петровской, затем Мариуполе). С 50-х гг. пр-во начало переселять азовцев на Сев. Кавказ, в связи с чем происходили волнения. На основании указа от 11 окт. 1864 А. к. в. было упразднено в 1865. Казаки с семьями были обращены в крестьянское сословие.

Лит.: Столетие воен. мин-ва. 1802 - 1902, т. 11, ч. 1, СПБ, 1902; Скальков-с к и и А., История Новой Сечи или последнего коша Запорожского, ч. 3, Одесса, 1846.

АЗОВСКОЕ МОРЕ (лат. Palus Maeotis, др.-греч. Maiotis limne - Меотийское озеро, др.-рус.- Сурожское), средиземное море в басе. Атлантич. ок., на Ю. Европ. части СССР. Соединяется Керченским прол. с Чёрным м. Пл. 38 тыс. км2; ср. глуб. 8 м, макс. 14 м. Ср. объём воды 320 км3. Берега на 3., С. и В. гл. обр. низменные, сложены песчанисто-ракушечными отложениями; на Ю. берег преим. обрывистый. Характерной чертой берегов А. м. является наличие намывных песчаных кос (Арабатская стрелка, Федотова, Бердян-ская, Ейская и др.), отделяющих от моря ряд мелководных заливов (Сиваш, Оби-точный и др.) и лиманов. Часть лиманов слабо связана с морем (Ейский, Бейсуг-ский), другая часть отделена от него песчаными пересыпями (оз. Молочное, лиман Долгий и др.). Крупные открытые заливы: Таганрогский, находится на С.-З., Темрюкский - на Ю.-В., Арабатский - на Ю.-З. Небольшие низменные о-ва Бирючий, Песчаные, Черепаха расположены вблизи берегов. В А. м. впадают крупные реки Дон и Кубань и многочисленные небольшие реки Миус, Бердя, Обиточная и др. Рельеф дна А. м. выровнен, имеет незначительный уклон к центру. Грунт сложен песком, ракушечником и илом. В юго-вост. части моря характерны грязевые вулканы.

Климат в районе А. м. континентальный. Зима холодная, относительно сухая, с преобладанием сильных ветров сев.-Еост. и вост. направлений. Ср. темп-pa воздуха в янв. и февр. от -1 на Ю. до -6 °С на С., с миним. темп-рой -30 °С и ниже. Лето жаркое, относительно влажное, с преобладанием ветров зап. направления. Ср. темп-pa в июле 23,5, 24,5 °С с максимумом до 40 0С. Осадков от 312 мм до 528 мм в год с преобладанием их в летние месяцы (в 1,5- 2 раза). Гидрологич. режим. А. м. определяется его континентальным положением, климатом, речным стоком и водооб-меном через Керченский пролив, а также хоз. деятельностью на терр. водосбора. Осн. значение имеет пресная составляющая водного баланса, к-рая складывается в среднем за год из материкового стока (39,6 км3) и осадков (13,5км3) минус испарение (33,9 км3); избыток пресных вод за год составляет 17,4 км3, к-рые вытекают через Керченский прол. Течения образуют общий круговорот против часовой стрелки. Под влиянием вост. и сев.-вост. ветров течения могут иметь обратное направление. Темп-pa воды имеет резко выраженный годовой ход. Зимой она падает ниже 0°С, летом достигает 25, 30°С. Солёность воды на Ю. составляет 11 0/00, на остальной части моря 9-100/00, а в предустьевых районах уменьшается до 2-400/00. Ср. уровень А. м. подвержен от года к году значительным колебаниям (до 33 см). Эпизодич. изменения уровня зависят гл. обр. от ветров и могут достигать 5,5 м. Лёд появляется в нояб.-дек. в Таганрогском зал. и к концу февр.- началу марта покрывает всю площадь моря. Очищение от льда происходит в марте - апреле. Рыбные ресурсы А. м. значительны, что определяется исключит, биологич. продуктивностью А. м.: содержание органич. вещества в 5-6 раз больше, чем в др. морских водоёмах. Добываются осетровые, лещ, судак, тарань, рыбец, шемая, бычки, сельдь, хамса, тюлька и др. виды. А. м. имеет также большое значение как трансп. мор. путь для грузовых и пасс, перевозок. Гл. порты: Таганрог, Жданов, Ейск, Бердянск. Карту А. м. см. при ст. Чёрное море.

Лит.: Добровольский А. Д., 3алогин Б. С., Моря СССР, М., 1965. А. М. Муромцев.

АЗОВСКОЕ СИДЕНИЕ, героическая оборона Азова донскими казаками в 1637-42. На Азов - мощную тур. крепость, располагавшую 4-тыс. гарнизоном и 200 пушками, опирались крымские и ногайские татары, совершая разорительные набеги на юж. р-ны России. Летом 1637 казаки, воспользовавшись внутр. борьбой в Крыму, захватили Азов и владели им в течение 5 лет. В нач. июня 1641 огромное турецко-татарское войско осадило Азов. Однако донцы (ок. 5,5 тыс. чел., в т. ч. 800 женщин) проявили исключительную стойкость и искусство в его обороне, отбивая много-числ. штурмы противника. Понеся большие потери, турки вынуждены были в конце сент. снять осаду. Отстояв крепость, казаки предложили рус. пр-ву принять Азов под свою власть. Для решения вопроса оно созвало Земский собор (1642), на котором часть депутатов высказалась за предложение казаков. Однако пр-во, во избежание войны с Турцией, решило от Азова отказаться и предложило казакам покинуть его. Летом 1642 казаки оставили Азов, разрушив его укрепления. Героич. оборона Азова нашла отражение в повестях об Азовском осадном сидении 17 в.

Лит.: Воинские повести древней Руси, М.-Л., 1949; Попов М. Я., Азовское сидение, М., 1961.

"АЗОВСТАЛЬ" им. С. Орджоникидзе, см. Ждановский завод "Азовсталь" им. С. Орджоникидзе.

АЗОКРАСИТЕЛИ, органич. красители, в молекулах к-рых содержится одна или несколько азогрупп - N=N-, связывающих ароматич. радикалы. По числу этих групп различают моно-, дис-, трис-и полиазокрасители. Обычно А. в ароматич. ядре содержат замещённые или незамещённые группы NH2 и ОН, а также NO2, Cl, SO3H, COOH и др. Кислотные группы обусловливают растворимость А. в воде.

Синтез А. основан на сочетании ароматич. диазосоединений ArN2Cl с фенолами, ароматич. аминами или их производными, напр.:
Краситель обычно осаждают из р-ра поваренной солью, сушат и размалывают.

Простейшие моноазокрасители обычно окрашены в жёлтый, оранжевый или красный цвет. Увеличение числа азогрупп, замена фенильных радикалов нафтильны-ми и увеличение числа окси- и аминогрупп приводят к углублению цвета (см. Батохромный и гипсохромный эффекты). По строению и характеру взаимодействия с текстильными материалами А. разделяют на основные, кислотные, прямые, протравные, холодного крашения, активные и др. Основные А. содержат группы NH2, кислотные - обычно одну или неск. сульфогрупп; последние применяют для крашения шёлка и шерсти. В больших количествах получают прямые А., используемые для окрашивания хлопчатобумажных материалов. Обычно это полиазокрасители на основе бензиди-на, а-нафтиламина и его сульфокислот. К протравным красителям относят А., к-рые с ионами Fe3+, Cr3+ и др. образуют на волокне нерастворимые, прочно удерживаемые волокнами комплексы. Для активных А. характерно образование химич. связи с волокном. Эти А., производство к-рых начато в 1952, не только красивы по оттенкам, но отличаются высокой прочностью к водным и др. обработкам. А. холодного крашения получают непосредственно на тканях. Нек-рые А. в тонкодисперсном состоянии используют в полиграфии и лакокрасочной пром-сти. Применяют А. гл. обр. для крашения текст, материалов, а также кожи, бумаги, резины и нек-рых пластиков. Лит.: Чекалин М. А., Химия и технология органических красителей, М., 1956.

АЗОКСИБЕНЗОЛ, C6H5N = N(O)C6H5, простейшее азоксисоединение; бледно-жёлтые кристаллы, tПЛ36°С. А. открыт Н. Н. Зыкиным в 1845.

АЗОКСИСОЕДИНЕНИЯ, органические соединения, содержащие азоксигруппу.

Хорошо изучены только ароматич. А., особенно азоксибензол.

А.- жёлтые кристаллы, нерастворимы в воде, хорошо растворимы в спирте, эфире. А. с различными радикалами, напр, n-бромазоксибензол, существуют в двух изомерных формах

полу чают нагреванием нитросоединений со спиртовой щёлочью, несимметричные - из нитросоединений и арилгидроксил-аминов, содержащих неодинаковые заместители. А. могут быть восстановлены в азосоединения, гидразосоедииения и далее до соответств. амина. Из алифатич. А. известен антибиотик элайомицин.

АЗОМЕТИНОВЫЕ КРАСИТЕЛИ, ор-ганич. красящие вещества, в молекулах к-рых присутствуют характерные хромофорные группы (см. Ауксо-хромы и хромофоры). К А. к. относится один из первых синтетич. красителей - пурпурно-красный мурексид; его возникновение служит характерной реакцией на мочевую кислоту, к-рая образует этот краситель при выпаривании с разбавл. HNO3 и с последующим добавлением аммиака.

АЗОНАЛЬНАЯ РАСТИТЕЛЬНОСТЬ, растительность, нигде не образующая самостоят, зоны, но встречающаяся в разных зонах (напр., заливные луга). См. также Зональная растительность.

АЗОНАЛЬНОСТЬ (отгреч. а - отрицат. частица и zone - пояс, зона), распространение к.-л. природного явления вне причинной связи с зональными особенностями данной территории (см. Зональность). А. может проявляться по отношению к системам как природных (кли-матич., почвенных, растительных, ландшафтных и др.) зон на равнинах, так и высотных поясов в горах. Азональны гл. образом те природные явления, к-рые полностью или в значит, мере обусловлены внутр. силами Земли: геологич. структура, морфоструктуры рельефа и т. п. Влияние азональных факторов наиболее резко проявляется в горах. Наряду с зональностью А. определяет формирование регион, ландшафтных комплексов. Разновидность А.- интразоналъность.

АЗООСПЕРМИЯ (от греч. а - отрицат. частица, zoon - живое существо и sper-ma - семя), отсутствие в семенной жидкости сперматозоидов. А. может обусловливаться нарушением проходимости для сперматозоидов половых путей (в результате воспалит, процессов) и состояниями, когда в яичках сперматозоиды не вырабатываются (заболевания яичек, диабет, интоксикации и др.). А.- одна из причин бесплодия мужчины.

АЗОРСКИЕ ОСТРОВА (португ. Ilhas dos Acores - Острова ястребов), архипелаг в Атлантич. ок., входит в состав Португалии. Пл. ок. 2,3 тыс. км2. Состоит из 9 крупных островов (Сан-Мигел, Терсейра, Пику, Сан-Жоржи, Флориш и др.) и неск. рифов. Острова вулканич. происхождения, имеют горный рельеф с вершинами вые. до 2320 м (г. Пику на о. Пику), крутые берега. Разнообразные проявления совр. вулканизма (особенно в р-не кальдеры Фурнаш на о. Сан-Мигел); обильны термальные минер, источники. Часты землетрясения. Климат субтропический, морской, с малыми амплитудами температур. Ср. темп-pa янв. ок. 14°С, июля ок. 22°С. Осадков 700- 800 мм в год. Субтропич. вечнозелёные леса и кустарники; много одичавших интродуцированных растений. Возделывание бананов, цитрусовых, абрикосов, винограда и др. А. о.- важная база мор. и воздушных трансатлантич. линий между Европой и Африкой, с одной стороны, и Америкой - с другой. Гл. гг. и порты: Понта-Делгада, Ангра-ду-Эроижму, Орта. Лит.: Dervenn С., Les Azores, P., 1955; Guides bleus Portugal, Madere - Acores, P., 1957.Восточная часть о. Сан-Мигел с кальдерой Фурнаш (видно вулканическое озеро в кальдере).

АЗОРСКИЙ АНТИЦИКЛОН, область высокого атм. давления на многолетних средних картах над субтропич. частью Атлантич. ок. в Сев. полушарии; А. а. - наиболее известный центр действия атмосферы, особенно хорошо выраженный летом. Центр его - вблизи 35-й параллели, недалеко от Азорских о-вов; зимой от него простирается отрог на Сахару, летом - на Средиземное м. и Юж. Европу. Давление в центре в янв. выше 1022 мбар, в июле - выше 1025 мбар. А. а.- результат резкого преобладания антициклонов над циклонами в течение всего года над этой частью океана. А. а.- очаг воздушных масс морского тропич. воздуха, взаимодействие к-рых с массами полярного воздуха на атлантич. полярном фронте обусловливает интенсивную циклонич. деятельность над океаном, сильно влияющую на погоду и климат Европы. Во внутр. части А. а. господствует тихая малооблачная и сухая погода. В более низких широтах, на экваториальной периферии А. а., дуют североатлан-тич. пассаты. Аналогом А. а. в Тихом ок. является Северотихоокеанский (Гавайский) антициклон. С. П. Хромов.

АЗОСОЕДИНЕНИЯ, класс органич. соединений, содержащих одну (или больше) азогруппу -N = N-. Все А. окрашены и многие из них используют как красители (см. Азокрасители). Простейшее А.- азобензол.

АЗОСОЧЕТАНИЕ, образование азокрасителей из диазосоединений и гл. обр. ароматич. аминов или фенолов, напр.:

Диазосоединения легко сочетаются с ароматич. соединениями, содержащими группы атомов: ОН, ОСН3, СН3; другие реагируют с соединениями, содержащими: NO2, SO3H, Cl и др. А. широко применяют в пром-сти. Реакция открыта нем. химиком П. Гриссом в 1864.

АЗОТ (от греч. azoos - безжизненный, лат. Nitrogenium), N, химич. элемент V группы периодич. системы Менделеева, ат. н. 7, ат. м. 14,0067; бесцветный газ, не имеющий запаха и вкуса.

Историческая справка. Соединения А.- селитра, азотная кислота, аммиак - были известны задолго до получения А. в свободном состоянии. В 1772 Д. Резерфорд, сжигая фосфор и др. вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. В 1787 А. Лавуазье установил, что "жизненный" и "удушливый" газы, входящие в состав воздуха, это простые вещества, и предложил назв. "А.". В 1784 Г. Кавендиш показал, что А. входит в состав селитры; отсюда и происходит лат. назв. А. (от позднелат. nitrum - селитра и греч. genna.6 - рождаю, произвожу), предложенное в 1790 Ж. А. Шапталем. К началу 19 в. были выяснены химич. инертность А. в свободном состоянии и исключит, роль его в соединениях с др. элементами в качестве связанного азота. С тех пор "связывание" А. воздуха стало одной из важнейших технич. проблем химии.

Распространённость в природе. А.- один из самых распространённых элементов на Земле, причём основная его масса (ок. 4*1015т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный А. (в виде молекул N2) составляет 78,09% по объёму (или 75,6% по массе), не считая незначит. примесей его в виде аммиака и окислов. Среднее содержание А. в литосфере 1,9*10-3% по массе. Природные соединения А.- хлористый аммоний NH4C1 и различные нитраты (см. Селитры)- Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком А. для пром-сти (сейчас осн. значение для связывания А. имеет пром. синтез аммиака из А. воздуха и водорода). Небольшие количества связанного А. находятся в кам. угле (1-2,5%) и нефти (0,02-1,5%), а также в водах рек, морей и океанов. А. накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя назв. "А." означает "не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент (см. Азот в организме). В белке животных и человека содержится 16- 17% А. В организмах плотоядных животных белок образуется за счёт потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, гл. обр. неорганические. Значит, количества А. поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный А. воздуха в соединения А. (см. А зотфиксация ).

В природе осуществляется круговорот А. (см. Круговорот веществ), главную роль в к-ром играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др. Однако в результате извлечения из почвы растениями огромного количества связанного А. (особенно при интенсивном земледелии) почвы оказываются обеднёнными А. Дефицит А. характерен для земледелия почти всех стран, наблюдается дефицит А. и в животноводстве ("белковое голодание"). На почвах, бедных доступным А., растения плохо развиваются. Азотные удобрения и белковая подкормка животных - важнейшее средство подъёма сел. х-ва. Хоз. деятельность человека нарушает круговорот А. Так, сжигание топлива обогащает атмосферу А., а заводы, производящие удобрения, связывают А. воздуха. Транспортировка удобрений и продуктов сел. х-ва перераспределяет А. на поверхности земли.

А.- четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода) (см. Космoxимия).

Изотопы, атом, молекула. Природный А. состоит из двух стабильных изотопов: и 15N (0,365% ). Изотоп применяют в химич. и биохимич. исследованиях в качестве меченого атома. Из искусственных радиоактивных изотопов А. наибольший период полураспада имеет 13N (T1/2 = 10,08 мин), остальные весьма ко-роткоживущие. В верхних слоях атмосферы, под действием нейтронов космич. излучения, 14N превращается в радиоактивный изотоп углерода 14С. Этот процесс используют и в ядерных реакциях для получения 14С (см. Углерод). Внешняя электронная оболочка атома А. состоит из 5 электронов (одной неподелённой пары и трёх неспаренных - конфигурация 2s22р3, см. Атом). Чаще всего А. в соединениях 3-ковалентен за счёт неспаренных электронов (как в аммиаке NНз). Наличие неподелённой пары электронов может приводить к образованию ещё одной ковалентной связи, и А. становится 4-ковалентным (как в ионе аммония NH4). Степени окисления А. меняются от +5 (в N2O5) до -3 (в NH3). В обычных условиях в свободном состоянии А. образует молекулу N2, где атомы N связаны тремя ковалентными связями. Молекула А. очень устойчива: энергия диссоциации её на атомы составляет 942,9 кдж/моль (225,2 ккал/моль), поэтому даже при t ок. 3300°С степень диссоциации А. составляет лишь ок. 0,1%.

Физические и химические свойства. А. немного легче воздуха; плотность 1,2506 кг/м3 (при 0°С и 101325 н/м2 или 760 мм рш. ст.), tпл-209,86°С, tКИП-195,8°С. А. сжижается с трудом: его критич. темп-pa довольно низка (-147,1°С) а критич. давление высоко 3,39 Мн/м2 (34,6 кгс/см2); плотность жидкого А. 808 кг/м3. В воде А. менее растворим, чем кислород: при 0°С в 1 м3 Н2О растворяется 23,3 г А. Лучше, чем в воде, А. растворим в нек-рых углеводородах.

Только с такими активными металлами, как литий, кальций, магний, А. взаимодействует при нагревании до сравнительно невысоких темп-р. С большинством других элементов А. реагирует при высокой темп-ре и в присутствии катализаторов. Хорошо изучены соединения А. с кислородом N2O, NO, N2O3, NO2 и N2O5 (см. Азота окислы). Из них при непосредственном взаимодействии элементов (4000°С) образуется окись NO, к-рая при охлаждении легко окисляется далее до двуокиси NO2. В воздухе окислы А. образуются при атм. разрядах. Их можно получить также действием на смесь А. с кислородом ионизирующих излучений (см. Радиационная химия). При растворении в воде азотистого N2O3 и азотного N2O5 ангидридов соответственно получаются азотистая кислота HNO2 и азотная кислота HNO3, образующие соли - нитриты и нитраты. С водородом А. соединяется только при высокой темп-ре и в присутствии катализаторов, при этом образуется аммиак NH3 Кроме аммиака, известны и другие многочисленные соединения А. с водородом, напр, гидразин диимидазо-тистоводородная к-та октазон и др.; большинство соединений А. с водородом выделено только ъ виде органических производных. С галогенами А. непосредственно не взаимодействует, поэтому все галогениды А. получают только косвенным путём, напр, фтористый азот - при взаимодействии фтора с аммиаком. Как правило, галогениды А.- малостойкие соединения (за исключением ); более устойчивы оксигалогениды А.- NOF, NOCl, NOBr, NO2F и NO2C1. С серой также не происходит непосредственного соединения А.; азотистая сера N4S4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскалённого кокса с А. образуется циан (CN)2. Нагреванием А. с ацетиленом С2Н2 до 1500°С может быть получен цианистый водород HCN. Взаимодействие А. с металлами при высоких темп-рах приводит к образованию нитридов (напр., Mg3N2).

При действии на обычный А. электрич. разрядов [давление 130-270 н/м2 (1-2 мм рт. cm.)] или при разложении нитридов В, Ti, Mg и Са, а также при электрич. разрядах в воздухе может образоваться активный А., представляющий собой смесь молекул и атомов А., обладающих повышенным запасом энергии. В отличие от молекулярного, активный А. весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.

А. входит в состав очень многих важнейших органич. соединений (амины, аминокислоты, нитросоединения и др.).

Получение и применение. В лаборатории А. легко может быть получен при нагревании концентрированного раствора нитрита аммония: NH4NO2 = N2 + 2H2O. Технич. способ получения А. осн. на разделении предварительно сжижен-ного воздуха, к-рый затем подвергается разгонке (см. Газов разделения).

Осн. часть добываемого свободного А. используется для пром. производства аммиака, к-рый затем в значит, количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, пром. значение для связывания А. воздуха имеет разработанный в 1905 цианамидный метод, осн. на том, что при 1000°С карбид кальция (получаемый накаливанием смеси извести и угля в электрич. печи) реагирует со свободным А.: СаС2 + N2 = CaCN2 + С. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2+3H2O = CaCO3+2NH3.

Свободный А. применяют во многих отраслях пром-сти: как инертную среду при разнообразных химич. и металлур-гич. процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий А. находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный А. в сжатом виде - в баллонах. Широко применяют многие соединения А. Произ-во связанного А. стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

Лит.: Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Химия и технология связанного азота, [М.- Л.], 1934; КХЭ, т. 1, М.,1961.

АЗОТ В ОРГАНИЗМЕ, один из осн. биогенных элементов, входящих в состав важнейших веществ живых клеток - белков и нуклеиновых кислот. Однако количество А. в о. невелико (1-3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь нек-рые микроорганизмы и сине-зелёные водоросли (см. Азотфиксация). Значит. запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органич. соединений (азот белков, нуклеиновых к-т и продуктов их распада, т. е. ещё не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганич., так и нек-рых органич. соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органич. азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноград-ским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганич. аммонийный азот в органич. соединения азота - амиды (аспарагин и глу-тамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации к-рого токсичны не только для животных, но и для растений. Амиды входят в состав мн. белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путём ферментативного амидирования глутамвиовой и аспарагиновой к-т осуществляется не только у микроорганизмов и растений, но в определённых пределах и у животных.

Синтез аминокислот происходит путём восстановит, аминирования ряда алъде-гидокислогп и кетокислот, возникающих в результате окисления углеводов (В. Л. Кретович), или путём ферментативного переаминирования (А. Е. Браунштейн и М. Г. Крицман, 1937). Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в огранич. мере синтезировать аминокислоты. Они не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, т. е., в конечном счёте,- белки растений и микроорганизмов.

Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами к-рого являются аминокислоты. На следующем этапе в результате дезаминирования органич. азот аминокислот вновь превращается в неорганич. аммонийный азот. У микроорганизмов и особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых к-т, осуществляется путём синтеза мочевой к-ты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в т. ч. и у человека), к-рые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере - большая часть его выводится из организма; у растений же обмен азота "замкнут" - поступивший в растение азот возвращается в почву лишь вместе с самим растением.

Лит.: Прянишников Д. Н., Азот в жизни растений и в земледелии СССР.М,- Л.,1945; Браунштейн А. Е., Главные пути ассимиляции и диссимиляции азота у животных, "Бахс>вские чтения", 1957, т.12; Кретович В. Л., Биохимия автотроф-ной ассимиляции азота, там же, 1961, т. 16; Фердман Д. Л., Биохимия, 3 нзд.,М., 1966; Кретович В. Л. и Каган 3. С., Усвоение и превращение азота у растений, в кн.: Физиология сельскохозяйственных растений, т. 2, М., 1967.

В. Л. Кретович, 3. С. Каган.

АЗОТА О КИСЛЫ, соединения азота с кислородом. Известны N2O, NO, N2O3, NO2 (и его димер N2O4), N2O5; есть сведения о существовании NO3, не выделенного в свободном состоянии. При высокой темп-ре в пламени вольтовой дуги, а в природе - при электроразряде из смеси азота с кислородом образуется окись азота NO, к-рая при охлаждении переходит в NO2. Другие А. о. получают косвенным путём. N2O5 - твёрдое вещество; остальные окислы при обычных условиях газообразны.
Закись азота N2O - бесцветный газ со слабым приятным запахом и сладковатым вкусом; вдыхание смеси воздуха с N2O вызывает состояние, напоминающее опьянение (отсюда название - веселящий газ). Плотность при 0°С и 101 325 н/м2 (760 мм рт. ст.) 1,9804 кг/м3, tкип - 89.50C, tпла-102.40С 1. объём N2O при 5°С растворяет 1,048 объёма N2O. Химически N2O с водой, растворами кислот и щелочей не реагирует, кислородом не окисляется. Выше 500°С разлагается: 2N2O = 2N2 + O2; поэтому при повышенных темп-pax действует как сильный окислитель и поддерживает горение. Получают N2O термич. разложением нитрата аммония: NH4NO3=N2O+ + 2Н2О. В медицине служит для общей анестезии. Окись азота NO - бесцветный газ, буреющий при соприкосновении с воздухом вследствие окисления до NO2. Плотность при 0°С и 101 325 н/м2 (760 мм рт. ст.) 1,3402 кг/м3, t -151,8°С, t КИП -163,6°С. В воде мало растворима (0,0738 объёма в 1 объёме Н2О при 0°С). С водой, кислотами и щелочами химически не взаимодействует. Образует многочисленные продукты присоединения, например нитрозилхлорид NOC1. Получают NO действием разбавленной азотной к-ты на некоторые металлы, напр.: 3Cu + 8HNO3 = = 3Cu(NO3)2 + 4H2O + 2NO. Окись азота - важный полупродукт окисления аммиака при получении азотной кислоты. Азотистый ангидрид (трёхокись азота) N2O3 - в обычных условиях неустойчивое соединение. Разлагается уже при 0°С: N2O3<->NO + NO2; ок. 3,5°С кипит с разложением, при 25°С содержит только 10% недиссоциированного N2O3- При низкой темп-ре может быть получен в виде тёмно-голубой жидкости, при сильном охлаждении - светло-голубой массы с tпл -102 °С. С водой образует азотистую кислоту: N2O3 + Н2О = 2HNO2, со щелочами - соли (см. Нитриты). N2O3 получают по реакции: N2O4 + + 2NO = 2N2O3; практич. применения не находит.

Двуокись азота NO2 - бурый газ с удушливым запахом, при 21,15 0С - буро-красная жидкость, бледнеющая при дальнейшем охлаждении из-за образования четырёхокиси азота N2O4, tотв -11,2°С. Взаимодействует с водой с образованием азотной к-ты и окиси азота: 3NO2 + Н2О = 2HNO3 + NO; со щелочами образует нитраты и нитриты. Двуокись азота - сильный окислитель; в токе NO2 энергично сгорают уголь, сера, фосфор, органические соединения. В пром-сти NO2 получают окислением NO. при производстве азотной к-ты, в лаборатории - термич. разложением некоторых нитратов: 2Pb(NO3)2 = 2PbO + + О2 + 4NO2. Применяют NO2 как нитрующий агент (см. Нитрование органических соединений). Азотный ангидрид (пяти-окись азота) N2O5, - бесцветные очень летучие кристаллы. Крайне неустойчив и взрывоопасен. Взаимодействует с водой, давая азотную к-ту: N2O5 + Н2О = 2HNO3, со щелочами образует соли - нитраты, В лаборатории получают по реакции: 2HNO3 + Р2О5 = = N2O5 + 2HPO3. Практич. применения не находит. Все А. о. физиологически активны.

Лит. см. при ст. Азот, Азотная кислота.

АЗОТИРОВАНИЕ, насыщение поверхности металлич. деталей азотом с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости. А. подвергают сталь, титан, нек-рые сплавы, наиболее часто - легиров. стали, особенно хромоалюминие-вые, а также сталь, содержащую ванадий и молибден.

Азотирование стали происходит при t 500-650°С в среде аммиака. Выше 400°С начинается диссоциация аммиака по реакции Образовавшийся атомарный азот диффундирует в металл, образуя азотистые фазы. При темп-ре А. ниже 591 °С азотированный слой состоит из трёх фаз (рис.): - нитрида - нитрида -. азотистого феррита, содержащего ок. 0,01% азота при комнатной темп-ре. При темп-ре А. 600-650° С возможно образование ещё и -фазы, к-рая в результате медленного охлаждения распадается при 591°С на эвтектоид . Твёрдость азотиров. слоя увеличивается до HV = 1200 (соответствует 12 Гн/мг) и сохраняется при повторных нагревах до 500-600°С, что обеспечивает высокую износоустойчивость деталей при повышенных темп-pax. Азотированные стали значительно превосходят по износоустойчивости цементированные и закалённые стали. А.- длительный процесс, для получения слоя толщиной 0,2-0,4 мм требуется 20-50 ч. Повышение темп-ры ускоряет процесс, но снижает твёрдость слоя. Для защиты мест, не подлежащих А., применяются лужение (для кон-струкц. сталей) и никелирование (для нержавеющих и жаропрочных сталей). Для уменьшения хрупкости слоя А. жаропрочных сталей иногда ведут в смеси аммиака и азота.

Азотирование титановых сплавов проводится при 850-950°С в азоте высокой чистоты (А. в аммиаке не применяется из-за увеличения хрупкости металла).

При А. образуется верхний тонкий нитридный слой и твёрдый раствор азота в а-титане. Глубина слоя за 30 ч - 0,08 мм с поверхностной твёрдостью HV = = 800-850 (соответствует 8-8,5 Гн/м2). Введение в сплав нек-рых легирующих элементов (А1 до 3%, Zr 3-5% и др.) повышает скорость диффузии азота, увеличивая глубину азотиров. слоя, а хром уменьшает скорость диффузии. А. титановых сплавов в разреженном азоте [100-10 н/м2 (1-0,1 мм рт. ст.)] позволяет получать более глубокий слой без хрупкой нитридной зоны.

А. широко применяют в пром-сти, в т. ч. для деталей, работающих при t до 500-600 °С (гильз цилиндров, коленчатых валов, шестерён, золотниковых пар, деталей топливной аппаратуры и др.).

Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965; Гуляев А. П., Металловедение, 4 изд., М., 1966.

Д. И. Браславский.

АЗОТИСТАЯ КИСЛОТА, HNO2, одноосновная, нестойкая, довольно слабая кислота, существующая только в разбавленных холодных водных растворах. Структурная формула НО - N = О. Константа диссоциации А. к. 4,5*10-4 при 18°С. Образуется наряду с азотной к-той при растворении NO2 в воде: 2NO2 + Н2О = HNO2 + HNO3. При нагревании и действии сильных к-т или окислителей А. к. разлагается с образованием окиси азота: 3HNO2 = HNO3 + + 2NO + Н2О. Восстановлением А. к. могут быть получены N2O,NO, NH2OH, NH3 и др. Соли А. к. (нитриты) получают восстановлением нитратов. Наиболее важное свойство А. к.- способность к диазотированию ароматич. аминов.

Поэтому в производстве азокрасителей широко применяют натрия нитрит NaNO2; при действии на эту соль кислот образуется свободная А. к.:

NaNO2+HCI=NaCI+HNO2. А. к. и её соли при попадании внутрь ядовиты. Профессиональные отравления редки. Нитрит натрия применяют в медицине при стенокардии и спазмах сосудов головного мозга (см. Сосудорасширяющие средства).

АЗОТИСТОВОДОРОДНАЯ КИСЛОТА, азоимид, HN3, соединение азота с водородом, бесцветная летучая жидкость с резким запахом. Структурная формула Н - N =N =N. Плотность ИЗО кг/м3, t 37° С, taa - 80° С. Безводная А. к. при нагревании или при сотрясении сосуда взрывается, разлагаясь на азот и водород; в разбавленных водных растворах устойчива. В водных растворах А. к. диссоциирует на ионы Н+ и N-3, причём по силе она близка к уксусной. Помимо кислотной функции, для А. к. характерна и окислительная: смесь А. к. с крепкой соляной кислотой растворяет золото и платину, т. е. ведёт себя аналогично царской водке. А. к. получают действием на её соли разбавл. серной кислоты. Прак-тич. применение имеют только соли А. к. - азиды.

АЗОТИСТОЕ РАВНОВЕСИЕ, состояние животного организма, при к-ром количество выводимого (с мочой и калом) азота равно кол-ву азота, получаемому с пищей. Взрослый организм в норме находится в состоянии А. р. Средняя потребность взрослого человека в азоте - 16 г в сутки, что соответствует 100 г белка. Если кол-во поступающего с пищей азота ниже белкового минимума, то организм начинает разрушать белки собственного тела и А. р. нарушается (отрицательный азотистый баланс: кол-во выводимого азота больше поступающего с пищей). Длительный недостаток белка (см. Голодание) ведёт к истощению. Растущий организм нуждается в положительном азотистом балансе, т. е. в превышении кол-ва вводимого азота над кол-вом выводимого из организма.

АЗОТИСТОКИСЛЫЕ СОЛИ, соли азотистой кислоты HNO2. Более употребительное назв. А. с.- нитриты. См. также натрия нитрит.

АЗОТИСТЫЕ ИПРИТЫ, см. Иприт.

АЗОТИСТЫЙ АНГИДРИД, N2O3, см. Азота окислы.

АЗОТНАЯ КИСЛОТА, HNO3, одноосновная сильная кислота, при обычных условиях бесцветная жидкость; один из наиболее важных продуктов химич. пром-сти. Структурная формула:

Физические и химические свойства. Плотность безводной А. к. 1522 кг/м3, tпл -41,15°С, tкип 84° С. С водой смешивается во всех отношениях, причём образует азеот-ропную смесь, содержащую 69,2% А. к. с t 121,8° С. Известны кристаллогидраты HNO3*H2O с tпл- 37,85° С и HNO3*3H2Oc tпл-18,5° С. В отсутствии воды А. к. неустойчива, разлагается на свету с выделением кислорода уже при обычных темп-pax (4HNO3 = 4NO2 + + 2Н2О + О2), причём выделяющейся двуокисью азота окрашивается в жёлтый, а при высоких концентрациях NO2 - в красный цвет. А. к.- сильный окислитель, окисляет серу до серной к-ты, фосфор - до фосфорной к-ты. Только золото, тантал и нек-рые платиновые металлы не реагируют с А. к. С большинством металлов А. к. взаимодействует преим. с выделением окислов азота: 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + + 4Н2О. Нек-рые металлы, напр, железо, хром, алюминий, легко растворяющиеся в разбавленной А. к., устойчивы к воздействию концентриров. А. к., что объясняется образованием на поверхности металла защитного слоя окисла. Такая особенность позволяет хранить и перевозить концентриров. А. к. в стальных ёмкостях. Смесь концентриров. А. к. и соляной к-ты (1:3), наз. царской водкой, растворяет даже золото и платину. Органич. соединения под действием А. к. окисляются или нитруются, причём в последнем случае остаток А. к.- нитрогруппа - NO+2 замещает в органич. соединениях водород (см. Нитрование). Соли А. к. наз. нитратами, а соли с Na, К, Са, NH+4 также селитрами.

Получение и применение. В 13 в. было описано получение А. к. нагреванием калиевой селитры с квасцами, железным купоросом и глиной. В сер. 17 в. И. Р. Глаубер предложил получать А. к. при умеренном (до 150°С) нагревании калиевой селитры с концентриров. серной к-той: KNO3 + H2SO4 = = HNO3 + KHSO4. До нач. 20 в. этот способ применяли в пром-сти, заменяя калиевую селитру более дешёвой природной чилийской селитрой NaNO3.

Современный способ производства А. к. основан на каталитич. окислении аммиака кислородом воздуха. Осн. стадии процесса: контактное окисление аммиака до окиси азота: 4NHg + 5О2 = = 4NO + 6Н2О; окисление окиси азота до двуокиси и поглощение смеси так называемых "нитрозных газов" водой: 2NO + О2 = 2NO2; 3NO2 + H2O =2HNO3 + NO. Смесь аммиака (10-12% ) с воздухом пропускают через нагретую до 750-900° С сетку катализатора, которым служат сплавы платины - тройной (93% Pt, 3%Rh, 4% Pd) или двойной (90-95% Pt, 10-5%Rh). Используют также двухступенчатый катализатор (1-я ступень - платиноидная сетка, 2-я - неплатиновый катализатор), что позволяет на 25-30% сократить расход платины. Время контакта воздушно-аммиачной смеси с катализатором не должно превышать 1 мсек, иначе образовавшаяся окись азота разлагается. Вторая стадия процесса - окисление NO до NO2 и растворение NO2 в воде - может быть проведена при атмосферном давлении, под давлением до 1 Мн/м2 (10 кгс/см2) или комбинированным способом, при к-ром под давлением происходит только поглощение нитрозных газов водой. Получают А. к. с концентрациями 45-49% или (при использовании давления) 55-58% . Дистилляцией таких растворов может быть получена А. к. азеотропного состава. Более концентрированную кислоту (до 100%) получают перегонкой растворов А.к. с коицентриров. H2SO4 или прямым синтезом - взаимодействием N2O4 с водой (или разбавл. А. к.) и кислородом: 2N2O4 + 2Н2О + + О2 = 4HNO3. В СССР производят 97- 98%-ную А. к.

Важнейшие области применения А. к.- производство азотных и комбинированных удобрений, взрывчатых веществ (тринитротолуола и др.), органич. красителей. В органич. синтезе широко применяют смесь концентриров. А. к. и серной к-ты - "нитрующую смесь". А. к. используют в камерном способе производства серной к-ты, для получения фосфорной к-ты из фосфора, как окислитель ракетного топлива. В металлургии А. к. применяют для травления и растворения металлов, а также для разделения золота и серебра.

Вдыхание паров А. к. приводит к отравлению, попадание А. к. (особенно концентрированной) на кожу вызывает ожоги. Предельно допустимое содержание А. к. в воздухе пром. помещений равно 50 мг/м3 в пересчёте на N2O5. Концентриров. А. к. при соприкосновении с органич. веществами вызывает пожары и взрывы.

Лит.: Атрощенко В. И., Картин С. И., Технология азотной кислоты, М.- Л., 1949; Миниович М. А., О современном состоянии и о перспективах развития производства разбавленной азотной кислоты, "Журнал прикладной химии", 1958, т. 31, в. 8; Миниович М. А., Азотная кислота, КХЭ, т. 1, М., 1961, с. 74-79. Э. Б. Шиллер.

АЗОТНАЯ ПРОМЫШЛЕННОСТЬ, см. в ст. Химическая промышленность.

АЗОТНОЙ КИСЛОТЫ ЭФИРЫ, см. Нитроэфиры.

АЗОТНОКИСЛЫЕ СОЛИ, соли азотной кислоты HNO3, напр. KNO3. Более употребительное назв. А.с.- нитраты. Об отдельных наиболее важных А. с. см. Алюминия нитрат, Железа нитраты, Серебра нитрат и т. д. Нитраты калия, натрия, аммония и кальция часто наз. селитрами (напр., Аммиачная селитра).

АЗОТНЫЕ УДОБРЕНИЯ, минеральные и органич. вещества, применяемые как источник азотного питания растений. Подразделяются на органические удобрения (навоз, торф, компост), содержащие, кроме азота, и др. элементы питания растений; минеральные удобрения, выпускаемые промышленностью, и зелёные удобрения (люпин, сераделла и др., см. Сидерация). А. у. применяли уже в глубокой древности. В Древней Руси широко использовали навоз. В поливном земледелии Ср. Азии давно известно зелёное удобрение. Значительно позднее стали применять минеральные удобрения, первым из к-рых были натриевая селитра, добываемая с сер. 19 в. из природных залежей в Чили (Юж. Америка). Потребление её в 1900 составляло ок. 300 тыс. т (в пересчёте на азот). В последующие годы пром-сть стала выпускать сульфат аммония, цианамид кальция и кальциевую селитру. К 1913 мировое произ-во А. у. достигло почти 700 тыс. т (в пересчёте на азот). Освоение в пром. масштабе синтеза аммиака из азота воздуха и водорода (1914-18) позволило резко повысить мировое произ-во А. у., к-рое в 1966 возросло до 19 200 тыс. m (в пересчёте на азот), в т. ч. в США 6400, ФРГ 1449, Франции 1082, Польше 462, ГДР 343 тыс. т. В России в 1913 производили 3 тыс. т (в пересчёте на азот) А. у. Крупная азотно-туковая пром-сть в СССР начала создаваться в годы 1-й пятилетки. В 1928 с. х-ву страны было поставлено А. у. (в тыс. т в пересчёте на азот) 2, в 1940 - 199, 1945 - 75, 1950 - 307, 1960 - 1003, 1965 - 2712,1966 - 3188, 1967 - 3753 и в 1968 - 4177. В минеральных А. у. азот может находиться в аммиачной (NH3), аммиачно-нитратной (NH3 и NO3), нитратной (NO3) и амидной (NH2) формах.

К аммиачным удобрениям относятся: сульфат аммония, хлористый аммоний, бикарбонат аммония, жидкие А. у. Сульфат аммония и хлористый аммоний наиболее эффективны на почвах, насыщенных основаниями (чернозёмы, карбонатные серозёмы, каштановые), к-рые обладают способностью нейтрализовать подкисляющее действие этих удобрений. Систематич. удобрение сульфатом аммония и хлористым аммонием кислых почв вызывает повышение кислотности; этот недостаток может быть устранён известкованием. Аммиачный азот менее подвержен вымыванию, чем нитратный, поэтому аммиачные удобрения можно вносить до посева, осенью. Менее пригодны они для поверхностного (при подкормках озимых) и местного (в рядки, лунки и гнёзда) внесения. Избыток хлора в хлористом аммонии отрицательно влияет на размер и качество урожая многих с.-х. культур (картофель, лён, масличные, табак, виноград и др.). Бикарбонат а м м о -н и я, производство к-poro пока ограничено объёмом экспериментальных исследований, обладает щелочной реакцией, но в почве подвергается нитрификации (см. Нитрификация в почве). Среди аммиачных форм А. у. большое значение имеют жидкие удобрения - жидкий безводный аммиак, водный аммиак, аммиакаты.

К аммиачно-нитратным удобрениям относятся: аммиачная селитра (нитрат аммония, азотнокислый аммоний), суль-фонитрат аммония (лейна-селитра, мон-тан-селитра, нитросульфат аммония). Аммиачнуюселитру выпускают преим. в гранулированном виде; она слабо подкисляет почву. Сульфонитрат аммония обладает относительно высокой подкисляющей способностью.

Нитратные удобрения - натриевая селитра (нитрат натрия, азотнокислый натрий, чилийская селитра), кальциевая селитра (нитрат кальция, азотнокислый кальций, известковая селитра, норвежская селитра), калийная селитра (нитрат калия, азотнокислый калий). Натриевая селитра - удобрение физиологически щелочное, поэтому лучше применять его на кислых почвах, особенно под сахарную свёклу, пшеницу, ячмень и др. чувствительные к почвенной кислотности культуры. Кальциевую селитру выпускают в гранулированном виде, обычно с примесью аммиачной селитры; она также подщелачивает почву. Калийная селитра, кроме азота, содержит калий и является источником азотно-калийного питания растений (см. Комплексные удобрения). Вносят её под чувствительные к хлору культуры. Все нитратные формы азота не поглощаются почвой. В районах избыточного увлажнения на лёгких почвах со слабой водоудерживающей способностью нитратные удобрения вымываются, поэтому в качестве основного удобрения здесь целесообразно применять аммиачные.

Амидные удобрения - мочевина (карбамид), цианамид кальция, мочевино-формальдегидные А. у. Наиболее ценна мочевина. В почве она легко переходит в карбонат аммония; вначале неск. подщелачивает, а затем слабо подкисляет почву. Рекомендуется вносить заблаговременно. Используется также в качестве белковой подкормки жвачных животных. Цианамид кальция обладает свойством снижать кислотность почвы. Эффективен на рыхлых, богатых органич. веществами нейтральных почвах,если удобряют им осенью. Непригоден для местного внесения. Цианамид кальция используют также как дефолиант для предуборочного удаления листьев у хлопчатника. Мочевино-фор-м альдегидные удобрения не вымываются из почвы; они особенно эффективны в районах избыточного увлажнения и поливного земледелия. Можно применять высокие дозы этих удобрений, обеспечив растения азотом на неск. лет. Характеристика минеральных А. у. приведена в таблице.




Свойства основных минеральных азотных удобрений
Удобрения


Химическая формула


Среднее содержание азота (%)


Объёмная масса удобрения (кг/м3)


Рассеваем ость после хранения


Слёживаемость


Гигроскопичность
Сульфат аммония


(NH4)2SO4


20,5-21,5


800


Хорошая (при влажности не более 2%)


Слабая


Очень слабая
Хлористый аммоний


NH4C1


26,0


600


Удовлетворительная


Умеренная


Слабая
Аммиак безводный


NH3


82,3


620













Аммиак водный


NH3+ Н2О


20,0


910













Аммиачная селитра




























гранулированная кристаллическая


NH4NO3 NH4NO3


34,7-35,0 34,7-35,0


820 840


Хорошая Плохая


Слабая Сильная


Очень сильная Очень сильная
Натриевая селитра


NaNO,


16,0


1100-1400


Удовлетворительная


Слабая


Умеренная
Кальциевая селитра


Ca(NO3)2*2H2O


17,0


900-1100


Удовлетворительная


Сильная


Очень сильная
Мочевина




























гранулированная


(NH2)2CO


46,0


650


Хорошая


Не слёживается


Очень слабая
кристаллическая


(NH2)2CO


46,0


650


Плохая


Слабая


Очень слабая




А. у.- эффективное средство повышения урожайности с.-х. культур, особенно в нечернозёмной зоне, во влажных р-нах лесостепи и в зоне поливного земледелия, где почвы содержат недостаточное кол-во азота. Нормы минеральных А. у. зависят от почвенных условии, биологич. особенностей культур, степени обеспеченности навозом или др. органич. удобрениями. Примерные нормы азотных удобрений (в кг на 1 га в пересчёте на азот): под озимые зерновые культуры, высеваемые по занятому пару, 40-60, по чистому пару 30-40; под яровые зерновые 40-60; кукурузу на силос и на зерно в нечернозёмной зоне и сев. части лесостепной зоны 60-120, на богатых чернозёмах лесостепи 45-60, в поливных районах 120-150; под сахарную свёклу на чернозёмах лесостепи 45-60, на серых лесных почвах, оподзоленных чернозёмах лесостепи и в нечернозёмной зоне 80-120, в поливных р-нах 100-150; под хлопчатник 120-140; лён-долгунец 40-60; под коноплю 45-90; под картофель 45-90; под капусту 90-120; под томаты, огурцы 60-90; под плодово-ягодные культуры 60-100. Меньшие нормы применяют на почвах, более богатых природным азотом, а также при одновременном использовании навоза или др. азотсодержащих органич. удобрений. Если А. у. достаточно, то в обеспеченных влагой р-нах нормы их можно увеличить, что, как правило, повышает урожай и улучшает качество продукции. Напр., хорошее азотное питание благоприятствует образованию клейковины в зерне пшеницы, увеличивает содержание белка в кормовых культурах.

А. у. используют как основное удобрение и в подкормках. Под озимые, высеваемые по чистому пару, А. у. вносят только в ранневесенних подкормках (30-40 кг азота на 1 га) по мёрзло-талой почве (по "черепку"). Под яровые культуры во всех зонах СССР А. у. в полной норме полезно применять до посева, а при орошении - в неск. приёмов перед поливами. Хлопчатник удобряют ими в 3 срока: до посева, в начале бутонизации и в начале цветения (по 1/3 нормы).

Лит.: Справочник по минеральным удобрениям, отв. ред. М. В. Каталымов, М.,1960; Позин М. Е., Технология минеральных солей, 2 изд., Л., 1961; Прянишников Д. Н., Избр. соч., т. 1, М.,1963; Справочник по удобрениям, 3 изд., М., 1964.

Ф. В. Турчин.

АЗОТНЫЙ АНГИДРИД, N2O5, см. Азота окислы.

АЗОТНЫЙ КАРТЕЛЬ, см. Картели по удобрениям.

АЗОТОБАКТЕР (Azotobacter), род аэробных свободноживущих бактерий, связывающих азот воздуха и синтезирующих из этого азота белок своих клеток. Впервые описан в 1901 М. Бейеринком, выделившим из садовой земли A. chroo-coccum и из вод каналов A. agile. A. - короткие подвижные палочки, дл. 4-7 мкм, обладающие жгутиками. Широко распространён в окультуренных почвах различных зон. Приготовленный из А. препарат азотобактерин (азотоген) применяется как удобрение для растений. См. также Азотфиксирующие микроорганизмы.

АЗОТОБАКТЕРИН, азотоген, бактериальный препарат, содержащий бактерии азотобактер, способные усваивать атмосферный азот и переводить его в доступное для растений состояние. Вносят А. в почву с семенами или обрабатывают им клубни, корни рассады с.-х. культур, не относящихся к сем. бобовых. См. Бактериальные удобрения.

АЗОТОЛЫ, нафтолы, АС, вещества, применяемые при крашении текстильных материалов. А. делятся на: анилиды 2,3-оксинафтойной кислоты и ариламиды (3-кетонокислот (напр., ацетоуксусной кислоты). А. обладают сродством к целлюлозным волокнам, поэтому фиксируются из щелочных р-ров на них и при обработке растворами диазосо-единений дают на самих волокнах яркие и прочные окраски любых цветов.

АЗОТФИКСАЦИЯ, процесс связывания молекулярного азота (N2) атмосферы и перевода его в азотистые соединения. А. осуществляется азотфиксирующими микроорганизмами, в т. ч. клубеньковыми бактериями, и др. микроорганизмами (бактерии, актиномицеты, дрожжи, грибы и сине-зелёные водоросли), обитающими в почвах, пресных водоёмах, морях и океанах. А.- важнейший биологич. процесс, играющий большую роль в круговороте азота в природе и обогащающий почву и водоёмы связанным азотом. В атмосфере содержится над 1 га почвы более 70 000 т свободного азота, и только в результате А. часть этого азота становится доступной для использования высшими растениями. Свободноживущие азотфиксирующие бактерии связывают несколько десятков килограммов азота на 1 га в год. Сине-зелёные водоросли на рисовых полях фиксируют до 200 кг/га азота в год. Общая прибыль азота (в надземных органах и пожнивных остатках) при культивировании бобовых растений составляет от 57,5 до 335 кг/га в год. Кол-во азота, внесённого в почву бобовыми растениями за счёт деятельности клубеньковых бактерий, достигает 100-250 кг/га за сезон. Естественно, этот процесс имеет большое значение для улучшения почв и повышения урожайности с.-х. культур. С этой целью перед посевом семена бобовых смешивают с препаратами клубеньковых бактерий, делают бобовые предшественниками злаков в севообороте, сеют кукурузу с клевером, вику с овсом и пр. Исследование механизма А. очень важно. Ещё в 1894 С. Н. Виноградский предположил, что в результате А. образуется аммиак. Совр. методами исследования, в т. ч. с применением тяжёлого изотопа азота (N15), это предположение подтверждено. А. Н. Бах полагал (1934), что А.-результат сопряжённого действия окислит.-восстановит, ферментов. Установлено, что восстановление молекулярного азота (N2) до аммиака (NH3) происходит при участии ферментной системы, содержащей железо, молибден, магний и функционирующей как переносчик электронов к N2. Азотфиксирующие ферментные системы катализируют восстановление N2 в присутствии источника энергии - аденозинтрифосфата (АТФ) и восстановителя, напр, молекулярного водорода (Н2) или гидросульфита (Na2S2O4). Т. о., собственно А., осуществляемая при помощи ферментов, не нуждается в кислороде и является восстановительным процессом. Лит.: Кретович В. Л., Любимов В. И., Биохимия фиксации азота, "Природа", 1964, № 12, с. 14 - 21; М и ш у-стин Е. Н., Шильникова В. К., Биологическая фиксация атмосферного азота, М., 1968. В. Л. Кретович, В. И. Любимов.

АЗОТФИКСИРУЮЩИЕ МИКРООРГАНИЗМЫ, азотфиксаторы, микроорганизмы, усваивающие молекулярный азот воздуха. К А. м. относятся бактерии из рода Rhisobium (см. Клубеньковые бактерии), живущие в симбиозе с бобовыми растениями (горох, лупин, клевер, люцерна и др.). На 1 га почвы, занятой бобовыми растениями, на корнях которых образуются клубеньки, связывается 100-250 кг и более атмосферного азота в год. А. м. являются также нек-рые актиномицеты и др. микроорганизмы, образующие клубеньки на корнях небобовых растений (напр., ольхи, лоха и др.). Азотфиксирующие бактерии образуют узелки в тканях листьев ряда тропических растений, к-рые без таких узелков нормально развиваться не могут. Активные азотфиксаторы - свободно живущие микроорганизмы, обитающие в почве и водоёмах. Это - анаэробная спороносная бактерия клостри-диум, открыта С. Н. Виноградским; аэробный микроорганизм - азотобактер, занимающий по азотфиксирующей активности первое место (до 25 г азота на 1 кг использованного сахара), однако распространённый в почве менее, чем клостридиум; к А. м. относятся и т. н. олигонитрофилы (бактерии, хорошо растущие на безазотистых питат. средах) и нек-рые виды Pseudomonas. Способность усваивать атмосферный азот установлена у микобактерий и у ряда аце-тоноэтиловых бактерий (Bacillus poly-myxa, Вас. macerans). Активными азот-фиксаторами являются и многие виды сине-зелёных водорослей (Nostoc, Ana-baena и др.), нек-рые пурпурные серобактерии и зелёные бактерии. Участвуют в фиксации атмосферного азота нек-рые виды грибов, дрожжей и спирохет. А. м. имеют очень важное значение в круговороте азота в природе и, в частности, в снабжении доступными формами азота растений, к-рые не способны усваивать его из воздуха, а получают азот после минерализации белка А. м. См. Азот-фиксация. Н. А. Красильникоа.

АЗПАК (сокр. от англ. Asian and Pacific Council), см. Азиатско-тихоокеанский совет.
Азотфиксирующие микроорганизмы: 1 - Azotobacter vinelandii; 2 - Clostr.dium paster.anum; 3 - Rhizobium meliloti; 4 - клубеньковые бактерии в клетках корня ольхи.

АЗУЛЕНЫ, группа органич. соединений, содержащих семичленный цикл, конденсированный с пятичленным; простейший представитель - азулен (I). А. в большей степени проявляют свойства ароматических, чем ненасыщенных, соединений. Поэтому А. относят к т. н. небензоидным ароматическим соединениям. Вместе с тем вследствие несимметричности их колец А. биполярны (II). А. легче, чем бензол, нитруются, сульфируются, аце-тилируются и т. д. А. с алкильными заместителями окрашены в синий цвет, нек-рые из них встречаются в эфирных маслах. Я.Ф.Комиссаров.


АЗУРИТ (от франц. azur - лазурь), минерал из класса карбонатов. Хим. состав Сu3[СО3]2(ОН)2. Кристаллизуется в моноклинной системе, образуя таблит-чатые и призматич. кристаллы тёмно-синего цвета. Часто встречается в порош-коватых массах, примазках и т.п. (медная синь). Спайность неясная, в одном направлении. Блеск яркий, стеклянный. Твёрдость по минералогич. шкале 3,5-4; плотность 3770-3890 кг/м3. В к-тах легко растворяется с выделением углекислоты. На поверхности Земли образуется за счёт окисления первичных рудных минералов меди - халькопирита, борнита, блёклых руд и др. Спутники А.- самородная медь, малахит, куприт, хризо-колла и др. минералы зоны окисления медных месторождений. Содержание меди в А.- 55,3% ; ценная медная руда. А. идёт также на изготовление синей краски.

АЗХАР, аль-Азхар (аль-Джами аль-Азхар), комплекс мусульм. релит, и светских учебных заведений. Осн. в Каире в 10 в. при мечети Азхар (построена в 970-972 при Фатимид-ском халифе аль-Муиззе, 953-975). В 1961 был реорганизован. В него входят: Высший учёный совет А.; Академия исламоведения; Ун-т аль-Азхар в составе ф-тов: мусульм. права, богословского, араб, языка, инженерного, с.-х., мед., административного, мусульм. жен. коллежа; Ин-ты и спец. религ. учреждения в Каире и провинц. центрах. В 1968/69 уч. г. в ун-те и ин-тах обучалось св. 30 тыс. студентов (из них 18% из др. мусульм. стран). Ун-т возглавляет ректор (шейх аль-Азхар), он же главный имам. В пр-ве О АР имеется министр по делам А. Центр, б-ка А. насчитывает 80 тыс. тт. (1969), 20 тыс. рукописей. А. издаёт "Маджаллят аль-Азхар" ("Журнал Азхара"), с 1929 по 1936 наз. "Hyp аль-Ислам" ("Свет ислама").

Лит.: Махмуд абуль-Уиюн, аль-Джами аль-Азхар. Нубза фи Тарихи, Каир, 1948; аль-Азхар фи иснай ашара ам.ш, Каир, 1965. Г. Ш. Шарбатов.

АЗХАРИ (аль-Азхари) Исмаил (2. 11.1902-26.8.1969), гос. и политич. деятель Республики Судан. Род. в семье муфтия (высшее мусульм. духовное лицо). После окончания Хартумского колледжа и амер. ун-та в Бейруте работал в системе просвещения. В 1939-40 секр. Конгресса выпускников высших уч. заведений, боровшегося за достижение Суданом нац. независимости, в 1940-45 (с перерывами) председатель Конгресса.

В 1945-52 пред. партии "Братья" ("Аль-Ашикка"). В 1952 - дек. 1967 пред. Национально-юнионистской партии. В дек. 1967 - мае 1969 пред. Юнионистско-демократич. партии. 9 янв. 1954 -1 янв. 1956 премьер-министр переходного суданского пр-ва. 1 янв.-4 июля 1956 премьер-министр первого нац. пр-ва. С июня 1965 до революции 25 мая 1969 пред. Верх. гос. совета Республики Судан.

АИД, Гадес или Плутон, в др.-греч. мифологии бог подземного мира и царства мёртвых [или царства теней (душ умерших)]. Сын Кроноса и Реи, брат Зевса, Посейдона и Деметры. А. или Тартар, Эреб, у римлян Орк также название самого царства мёртвых.

АИЛ, 1) у киргизов и алтайцев в прошлом посёлок кочевого или полукочевого типа, обычно состоявший из родственников различных степеней. У алтайцев А. наз. и отдельное жилище (юрта или шалаш) с усадьбой. 2) У монгольских народов кочевая семейная группа. 3) В Кирг. ССР сельская адм.-терр. единица. В соответствии с этим сельские Советы Кирг. ССР именуются: "аилные и сельские Советы депутатов трудящихся".

АИР, Азбин (франц. Air, Azbine), плоскогорье на Ю. Сахары, в Нигере. Сложено древними гранитами и четвертичными лавами. Ср. вые. 800-900 м, наибольшая - до 1900 м (потухший вулкан). В долинах уэдов - акациевое ко-лючедеревье, на склонах - опустынен-ная саванна, вершины - голые пустыни. Разводят скот: зебу, верблюдов. В оазисах выращивают пальму дум, просо, пшеницу, хлопчатник, кукурузу.

АИР (Acorus), род травянистых многолетних растений сем. ароидных. Листья длинные (до 1 м) мечевидные, корневище толстое ползучее. Два вида. A. calamus распространён в Азии, Европе, Сев. Америке. В СССР встречается гл. обр. в Европ. части (кроме сев. р-нов), в Казахстане, Сибири и на Д. Востоке. Растёт по берегам рек и озёр, иногда образуя сплошные заросли. Растения содержат дубильные вещества. Из корневища А. (ирный корень) добывают эфирное масло, употребляемое в пром-сти (парфюмерной, кондитерской и др.). Препараты из корневищ применяются для возбуждения аппетита и улучшения пищеварения, а также как тонизирующее средство при угнетении центральной нервной системы. Др. вид - A. gramineus - распространён гл. обр. в Вост. Азии; корневища его используются в кондитерской пром-сти. Лит.: Атлас лекарственных растений СССР.М., 1962.

АИСТООБРАЗНЫЕ(Ciconiiformes), отряд птиц; то же, что голенастые.

АИСТЫ (Ciconiidae), сем. птиц отр. голенастых. Голосовые связки у А. не развиты, они не имеют голоса. 11 родов, объединяющих 17 видов (марабу, ябиру и др.). Распространены гл. обр. в тропич., субтропич. и умеренных зонах. В СССР - 2 вида из рода Ciconia: белый А. (С. ciconia) и чёрный А. (С. nigra). Убелого А. красные ноги и клюв, оперение в основном белое, маховые и кроющие перья - чёрные; весит до 4 кг. Встречается в Ср. и Юж. Европе, в Сев.-Зап. Африке, в Передней и Ср. Азии, Японии, Корее; в СССР - в юго-зап. части страны, в Ср. Азии и Приморье. Обитает на открытых пространствах с обособленными деревьями, в горах и близ жилья человека. Гнёзда (1-2 м в диаметре) устраивает на деревьях, скалах, на крышах домов. В кладке 3-5 белых яиц; насиживают оба родителя ок. 30 дней. Пары постоянные. В Ср. Европе численность несколько сокращается. Питается лягушками, ящерицами, мышами, насекомыми и пр. Перелётная птица; зимует в Центр, и Юж. Африке, Юго-Вост. Азии и Зап. Китае.

Лит.: Птицы Советского Союза, под ред. Г. П. Дементьева и Н. А. Гладкова, т. 2, М., 1951; Определитель птиц СССР, [М.], 1964.

АЙ, река в Башк. АССР и Челябинской обл. РСФСР, лев. приток р. Уфы. Дл.