загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна, окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ЖЕЛЕЗОБЕТОНЕ, БЕТОНЕ, АРХИТЕКТУРЕ И НЕ ТОЛЬКО...:
ОПРЕДЕЛЕНИЯ:

АСФАЛЬТИРОВАНИЕ, устройство асфальтобетонных покрытий на автомобильных дорогах, улицах, аэродромах и т. п. путём укладки и уплотнения асфальтобетонной смеси по предварительно подготовленному основанию. В зависимости от назначения покрытия асфальтобетонную смесь (асфальтобетон) укладывают в один или два слоя на основание из щебня, гравия (нежёсткое основание) или бетона (жёсткое основание). Нижний слой толщиной 4-5 см устраивают из крупно- или среднезерни-стой смеси с остаточной пористостью 5-10% ; верхний слой толщиной 3-4 см-из средне- или мелкозернистой смеси (остаточная пористость 3-5%). При тяжёлых нагрузках и интенсивном движении транспорта покрытия устраивают 3-4-слойными общей толщиной 12-15 см. АСФАЛЬТИРОВАНИЕ начинается с очистки основания от пыли и грязи механич. дорожными щётками и поливомоечными машинами, исправления неровностей основания, обработки его поверхности жидким битумом или битумной эмульсией. Асфальтобетонная смесь приготовляется в асфальтобетоно-смесителях на стационарных или полустационарных заводах (установках), доставляется на место автомобилями-самосвалами и загружается в приёмный бункер асфалътобетоноукладчика, к-рый укладывает, разравнивает и предварительно уплотняет смесь. Окончат. уплотнение осуществляется катками дорожными. .


КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО, отрасль строительства, занятая сооружением объектов, связанных с обслуживанием жителей городов, посёлков городского типа, районных сельских центров и населённых пунктов сельской местности. В числе этих объектов: системы водоснабжения и канализации с очистными сооружениями и сетями; сооружения городского электрического транспорта с путевым, энергетическим хозяйством, депо и ремонтными предприятиями; сети газоснабжения и теплоснабжения с распределительными пунктами, районными и квартальными котельными; электрические сети и устройства напряжением ниже 35 кв; гостиницы; городские гидротехнические сооружения; объекты внешнего благоустройства населённых мест, озеленения, дороги, мосты, путепроводы, ливнестоки; предприятия санитарной очистки, мусороперерабатывающие и др. Планомерное развитие КОММУНАЛЬНОГО СТРОИТЕЛЬСТВА в СССР началось ещё в 1-й пятилетке и осуществлялось нарастающими темпами до начала Великой Отечеств, войны 1941-45. В годы 4-й пятилетки (1946-50) проводились работы по восстановлению объектов коммунального назначения, разрушенных во время нем.-фаш. оккупации. В последующие годы КОММУНАЛЬНОЕ СТРОИТЕЛЬСТВО велось высокими темпами в связи с бурным развитием промышленности, культуры, увеличением численности городов и посёлков городского типа .
ГРАДОСТРОИТЕЛЬСТВО, теория и практика планировки и застройки городов (см. Город). ГРАДОСТРОИТЕЛЬСТВО определяют социальный строй, уровень развития производственных сил, науки и культуры, природно-климатичие условия и национальные особенности страны. ГРАДОСТРОИТЕЛЬСТВО охватывает сложный комплекс социально-экономических, строительно-технических, архитектурно-художественных, а также санитарно-гигиенических проблем. Общим для ГРАДОСТРОИТЕЛЬСТВО досоциалистических формаций является большее или меньшее влияние на него частной собственности на землю и недвижимое имущество..
ЗЕЛЁНОЕ СТРОИТЕЛЬСТВО, составная часть современного градостроительства. Городские парки, сады, скверы, бульвары, загородные парки (лесопарки, лугопарки, гидропарки, исторические, этнографические, мемориальные), национальные парки, народные парки, тесно связанные с планировочной структурой города, являются необходимым элементом общегородского ландшафта. Они способствуют образованию благоприятной в санитарно-гигиеническом отношении среды, частично определяют функциональную организацию городских территорий, служат местами массового отдыха трудящихся и содействуют художественной выразительности архитектурых ансамблей. При разработке проектов садов и парков учитывают динамику роста деревьев, состояние и расцветку их крон в зависимости от времени года.

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

й), живучка ползучая, одуванчик и мн. др.

ГЕМИКРУСТАЦЕИ (Hemicrustacea), класс вымерших древних примитивных членистоногих. Были распространены с кембрийского по пермский период. Внешне напоминали рачков - щитней. Для Г. характерен сплошной, разнообразный по форме спинной щит и стержневид-ный или пластинчатый хвостовой шип (тельсон). Ок. 10 родов. Обитали в воде.

Лит.: Основы палеонтологии. Членистоногие. Трилобитообразные и ракообразные, М., 1960, с. 197.

ГЕМИМЕРИДЫ (Hemimerida), отряд насекомых с неполным превращением (гемиметаболия). Близки к кожисто-крылым и рассматриваются иногда как их подотряд. Тело несколько уплощенное; дл. 8-14 мм, крылья отсутствуют, усики и ноги короткие, глаз нет; ротовые органы грызущие. Один род - Hemimerus, включает 8 видов. Г. распространены в Экваториальной Африке. Наружные паразиты грызунов из рода Cricetomys живут в волосяном покрове; питаются, видимо, производными кожного эпидермиса животного-хозяина. Размножаются живорождением.

Лит.: Бей-Биенко Г. Я., Общая энтомология, М-, 1966.

ГЕМИМЕТАБОЛИЯ (от греч. hemi-- полу- и metabole - превращение), неполное превращение, тип постэмбрионального развития насекомых ряда систематич. групп (стрекозы, подёнки, веснянки, прямокрылые, клопы и др.), при к-ром из яйца выходит личинка (нимфа), внешне сходная со взрослым насекомым: имеет фасеточные глаза, расчленённые лапки, такие же, как у взрослого, ротовые органы. У насекомых из разных отрядов постэмбриональное развитие включает от 3 до 30 нимфальных возрастов. Превращение нимфы во взрослое насекомое происходит без стадии куколки. Иногда термин Г. применяется только к развитию стрекоз, подёнок и веснянок, имеющих в нимфальной стадии провизорные, или временные, органы (жабры, маска); развитие др. насекомых с неполным превращением, при к-ром у личинки нет провизорных органов, наз. паурометаболией. Ср. Голометаболия.

М. С. Гиляров.

ГЕМИНАТЫ (от лат. gemino - удваиваю), двойные согласные, 1) согласные, при артикуляции к-рых происходит задержка размыкания (напр., рус. "т" в "оттого", "д" в поддал); 2) две одинаковые согласные в составе слова (напр., рус. ванна, франц. immense-необъятный, итал. femmina-женщина).

ГЕМИНИ, пары гомологичных хромосом, образующиеся при делении клеточного ядра; то же, что биваленты.

ГЕМИНИДЫ, метеорный поток с радиантом в созвездии Близнецов (лат. Gemini). Наблюдается в 1-й пол. декабря, максимум 13-14 дек. Г.- один из наиболее активных ежегодно действующих потоков. Имеет очень короткий период обращения вокруг Солнца -1,7 года. Впервые наблюдался в 1862.

ГЕМИОПИЯ (от греч. hemi- -полу- и ops - глаз), сохранение половины поля зрения в глазу при гемианопсии. Напр., глаз с выпадением правой половины поля зрения (правосторонней гемианопсией) имеет левостороннюю Г. (т. е. сохранение левого поля . зрения).

ГЕМИПЛЕГИЯ (от греч. hemi-- полу-и plege - удар, поражение), полная утрата произвольных движений в руке и ноге с одной стороны. Различают органич. и функциональную Г. Органич. Г. может развиться при нарушении мозгового кровообращения (кровоизлияние в мозг, тромбоз или эмболия мозговых сосудов), опухоли или воспалит, заболеваниях головного мозга (энцефалит, арахноидит и др.). Причина функциональной Г.- истерия. Органич. Г. возникает вследствие повреждения патологич. процессом двигательной пирамидной системы (нервное образование, проходящее от коры головного мозга до передних рогов спинного мозга). При органич. Г. в парализованных конечностях повышаются мышечный тонус и сухожильные рефлексы, образуются патологич. рефлексы. Отсутствие движений в конечностях сочетается с частичным нарушением функции мимич. мускулатуры на той же, а иногда на противоположной стороне. Нередко на поражённой стороне появляются синюшность (цианоз), отёчность, похолодание конечностей. При функциональной Г. этих симптомов не бывает. В зависимости от характера процесса и степени поражения пирамидной системы нормальные движения могут восстановиться; иногда наблюдаются остаточные явления Г. Функциональная Г. проходит бесследно.

Лечение - устранение основного заболевания, вызвавшего Г. Необходимо раннее применение массажа и лечебной гимнастики. Стимулирующие нервную систему, а также снижающие мышечный тонус средства.

Лит.: Многотомное руководство по неврологии, т. 2, М., 1962, с. 92 - 101.

В. С. Ротенберг.

ГЕМИСТ ГЕОРГИЙ ПЛИФОН (ок. 1355-1452), византийский философ-платоник, учёный и политич. деятель; см. Плифон.

ГЕМИЦЕЛЛЮЛОЗЫ, высокомолекулярные (мол. м. 1000-12 000) гетерополисахариды (см. Полисахариды). Встречаются в значит, количестве (от 6 до 27% ) в одревесневших частях растений (соломе, семенах, орехах, древесине) вместе с целлюлозой; в отличие от неё, Г. легко гидролизуются разбавленными минеральными к-тами с образованием галактозы, ксилозы, арабинозы и уроновых к-т. Из растений извлекаются разбавленными щелочами.

ГЕМИЦИКЛИЧЕСКИЙ ЦВЕТОК (от греч. hemi- - полу- и kyklos - круг), цветок, в к-ром одни части расположены по спирали, другие -по кругам, представляющим собой также очень сжатую спираль. В Г. ц. расположены чаще всего по кругам листочки околоцветника, а тычинки и пестики - по спирали. Г. ц.- признак примитивного строения растения; встречается преим. у растений из наиболее примитивных семейств - магнолиевых, лютиковых, аноновых и нек-рых др.

ГЕМЛИК (Gemlik), город на С.-З. Турции, на берегу Гемликского зал. Мраморного м. 15,7 тыс. жит. (1965). 3-д искусств, волокна.

ГЕМЛИКСКИЙ ЗАЛИВ, Гемлик-Кёрфези (Gemlik Korfezi), залив у юго-вост. берега Мраморного м. Дл. 28 км, шир. ок. 17 км. Глуб. у входа до 66 м, в ср. части залива до 105 м. Порт - Гемлик.

ГЕМЛОК, название сев.-амер. видов древесных растений рода тцуга сем. сосновых; то же, что хемлок.

ГЕММА (от лат. gemma - драгоценный камень, самоцвет), а Северной Короны, звезда 2,2-й визуальной звёздной величины, светимость в 38 раз больше солнечной, расстояние от Солнца 20 парсек.

ГЕММА (лат. gemma), резной камень с изображением. Г. с врезанными вглубь изображениями наз. инталиями, Г. с выпуклыми изображениями - камеями. С древности служили печатями (гл. обр. инталии), знаками собственности, амулетами, украшениями. В последующее время используются гл. обр. как броши, кулоны, перстни. Изготовление резных камней наз. глиптикой.

ГЕМО..., гемато... (от греч. haima, род. падеж haimatos - кровь), составная часть сложных слов, обозначающая отношение, принадлежность к крови (напр., гемоглобин, гематология).

ГЕМОГЛОБИН (Нb) (от гемо... к лат. globus - шар), красный железосодержащий пигмент крови человека, позвоночных и нек-рых беспозвоночных животных; в организме выполняет функцию переноса кислорода (О2) из органов дыхания к тканям; играет также важную роль в переносе углекислого газа от тканей в органы дыхания. У большинства беспозвоночных Г. свободно растворён в крови; у позвоночных и нек-рых беспозвоночных находится в красных кровяных клетках - эритроцитах, составляя до 94% их сухого остатка. Мол. масса Г., включённого в эритроциты, ок. 66 000, растворённого в плазме - до 3 000 000. По химич. природе Г.- сложный белок- хромопротвид, состоящий из белка глобина и железопорфирина - тема. У высших животных и человека Г. состоит из 4 субъединиц-мономеров с мол. массой около 17 000; два мономера содержат по 141 остатку аминокислот (альфа-цепи), два других - по 146 остатков (бета-цепи). Пространственные структуры этих по-липептидов во многом аналогичны. Они образуют характерные "гидрофобные карманы", в к-рых размещены молекулы тема (по одной на каждую субъединицу). Из 6 координационных связей атома железа, входящего в состав тема, 4 направлены на азот пиррольных колец; 5-я соединена с азотом имидазольного кольца гистидина, принадлежащего полипепти-дам и стоящего на 87-м месте в альфа-цепи и на 92-м месте в бета-цепи; 6-я связь направлена на молекулу воды или др. группы (лиганды) ив т. ч. на кислород. Субъединицы рыхло связаны между собой водородными, солевыми и др. нековалент-ными связями и легко диссоциируют под влиянием амидов, повышенной концентрации солей с образованием гл. обр. симметричных димеров (альфа-бета) и частично альфа- и бета-мономеров. Пространственная структура молекулы Г. изучена методом рентгеноструктурного анализа (М. Пе-руц, 1959). Последовательность расположения аминокислот в альфа и бета-цепях Г. ряда высших животных и человека полностью выяснена. В собранной в тетрамер молекуле Г. все 4 остатка гема расположены на поверхности и легко доступны реакции с О2. Присоединение О2 обеспечивается содержанием в теме атома Fe2+. Эта реакция обратима и зависит от парциального давления (напряжения) О2. В капиллярах лёгких, где напряжение О2 ок. 100 мм рт. ст., Г. соединяется с О2 (процесс оксигенации), превращаясь в оксигенированный Г.- оксигемоглобин. В капиллярах тканей, где напряжение О2 значительно ниже (ок. 40мм рт. ст.), происходит диссоциация оксигемоглобина на Г. и О2; последний поступает в клетки органов и тканей, где парциальное давление О2 ещё ниже (5 - 20 мм рт. ст.); в глубине клеток оно падает практически до нуля. Присоединение О2 к Г. и диссоциация оксигемоглобина на Г. и О2 сопровождаются конформаци-онными (пространственными) изменениями молекулы Г., а также его обратимым распадом на димеры и мономеры с последующей агрегацией в тетрамеры. Кривая диссоциации оксигемоглобина человека. Изменяются при реакции с О2 и др. свойства Г.: оксигенированный Г.- в 70 раз более сильная к-та, чем Г. Это играет большую роль в связывании в тканях и отдаче в лёгких СО2. Характерны полосы поглощения в видимой части спектра: у Г.- один максимум (при 554 ммк), у оксигенированного Г.- два максимума при 578 и 540 ммк (см. вклейку к стр. 208). Г. способен непосредственно присоединять СО2 (в результате реакции СО2 с NH2 - группами глобина); при этом образуется карбгемоглобин - соединение неустойчивое, легко распадающееся в капиллярах лёгких на Г. и СО2. Кол-во Г. в крови человека - в среднем 13-16 г% (или 78%-96% по Сали); у женщин Г. неск. меньше, чбм у мужчин. Свойства Г. меняются в онтогенезе. Поэтому различают Г. эмбриональный, Г.- плода (foetus)- HbF, Г. взрослых (adult) - HbA. Сродство к кислороду у Г. плода выше, чем у Г. взрослых, что имеет существенное физиол. значение и обеспечивает большую устойчивость организма плода к недостатку О2. Определение кол-ва Г. в крови имеет важное значение для характеристики дыхательной функции крови в нормальных условиях и при самых различных заболеваниях, особенно при болезнях крови. Кол-во Г. определяют специальными приборами - гемометрами. При нек-рых заболеваниях, а также при врождённых аномалиях крови (см. Гемоглобинопатии) в эритроцитах появляются аномальные (патологические) Г., отличающиеся от нормальных замещением аминокислотного остатка в а- или Р-цепях. Выделено более 50 разновидностей аномальных Г. Так, при серповидноклеточной анемии обнаружен Г., в (3-цепях к-рого глутаминовая к-та, стоящая на 6-м месте от N-конца, замещена валином. Аномалии эритроцитов, связанные с содержанием гемоглобина F или Н, лежат в основе талассемии, метгемоглобинемии. Дыхательная функция нек-рых аномальных Г. резко нарушена, что обусловливает различные патологические состояния (анемии и др.). Свойства Г. могут меняться при отравлении организма, напр, угарным газом, вызывающим образование карбоксигемоглобина, или ядами, переводящими Fe2+ тема в Fe3+ с образованием метгемоглобина. Эти производные Г. не способны переносить кислород. Г. различных животных обладают видовой специфичностью, обусловленной своеобразием строения белковой части молекулы. Г., освобождающийся при разрушении эритроцитов,-источник образования жёлчных пигментов. В мышечной ткани содержится мышечный Г.- миоглобин, по мол. массе, составу и свойствам близкий к субъединицам Г. (мономерам). Аналоги Г. обнаружены у нек-рых растений (напр., лег-гемоглобин содержится в клубеньках бобовых). Лит.: Коржуев П. А., Гемоглобин, М., 1964; Гауровиц Ф., Химия и функции белков, пер. с англ., 2 изд., М., 1965, с. 303 - 23; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966, с. 188-97; Рапопорт С. М., Медицинская биохимия, пер. с нем., М., 1966; Перутц М., Молекула гемоглобина, в сб.: Молекулы и клетки, М., 1966; Цукеркандль Э., Эволюция гемоглобина, там же; Fanelli A. R., AntoniniE., CaputpA., Hemoglobin and myoglobin, "Advances in Protein Chemistry", 1964, y. 19, p. 73 - 222; An ton i-ni E., Brunori M., Hemoglobin, "Annual Review of Biochemistry", 1970, v. 39, p. 977 - 1042. Г. В. Андреенко, С. Е. Северин.

ГЕМОГЛОБИНОМЕТР, прибор для определения количества гемоглобина в крови; то же, что гемометр.

ГЕМОГЛОБИНОПАТИИ (от гемоглобин и греч. pathos - страдание, болезнь), гемоглобинозы, состояния, обусловленные присутствием в красных кровяных тельцах (эритроцитах) одного или нескольких аномальных (патологических) гемоглобинов. Выделено св. 50патологич. разновидностей гемоглобина, возникших в результате врождённого, передаваемого по наследству дефекта образования белковой части гемоглобина- глобина. При аномалиях гемоглобина нарушаются физ.-хим. свойства эритроцитов, обменные процессы в них; эритроциты становятся менее устойчивыми к различным гемолизирующим факторам (см. Гемолиз). Патологич. гемоглобины обозначаются заглавными буквами лат. алфавита от С до О. присоединяемыми к символу гемоглобина - Нb. При передаче Г. от одного из родителей (гетерозиготный тип наследования) носители пато-логич. гемоглобина могут быть практически здоровыми людьми; при передаче Г. от обоих родителей (гомозиготный тип наследования) у детей возникает картина тяжёлого гемолиза. Г. преимущественно поражают население тропич. и субтропич. областей (Экваториальная Африка, Аравийский п-оп, Юж. Индия, Юж. Китай, Средиземноморье и др.). В СССР Г. обнаруживаются в Азербайджане, Грузии. Наиболее распространены и отличаются тяжестью проявлений серповид-ноклеточная (дрепаноцитарная) анемия и талассемия. Серповиднокле-точная анемия (HbS) связана с наличием в эритроцитах патологич. гемоглобина S (первая буква англ, sicle - серп). При этой форме Г. эритроциты в условиях снижения парциального давления кислорода в окружающей среде приобретают форму серпа. При увеличении в крови количества серповидных эритроцитов нарастает вязкость крови, замедляется кровоток, происходит разрушение серповидных эритроцитов, развиваются тромбозы в различных органах. У практически здоровых носителей HbS серповидность эритроцитов и появление признаков заболевания могут наступить лишь в условиях гипоксии. Поэтому всем носителям HbS противопоказаны служба в авиации, а также полёты на самолётах без достаточного кислородного обеспечения. Талассемия - заболевание, распространённое в средиземноморских странах. Характеризуется значительным повышением содержания HbF в крови. Полагают, что при этом образование нормального гемоглобина НbА подавлено. Нарушено также образование железосодержащей части гемоглобина (гема). Различают большую, малую и минимальную талассемию. При гетерозиготном наследовании развиваются малая, или минимальная, талассемия, при гомо-зиготном - большая. Для всех форм та-лассемии характерно наличие в крови "мишеневидных" эритроцитов, в к-рых гемоглобин расположен в центре клетки в виде мишени. Признаки серповидноклеточной анемии и талассемии (задержка общего развития, анемия, желтушность, увеличение печени, селезёнки, изменения костей скелета) появляются с раннего детства. Осложнением серповидноклеточ-ной анемии являются тромбозы сосудов кишечника, пигментные камни в жёлчных путях. Лечение: при развитии анемии - переливание крови, витамины. При талассемии незначит. улучшение достигается удалением селезёнки. Иногда в группу Г. включают овалоклеточ-ную анемию. Кроме указанных форм Г., имеют распространение и др. аномалии гемоглобина (HbC, HbD, HbE). Знакомство с распространённостью Г. и выявление их носителей имеют определённое значение для профилактики Г. Лит.: Кассирский И. А. иАлек-сеев Г. А., Клиническая гематология, 4 изд., М., 1970; Генетика в гематологии, под ред. И. А. Кассирского, Л., 1967. А. М. Полянская.

ГЕМОГЛОБИНОФИЛЬНЫЕ БАКТЕРИИ, бактерии рода Haemophilus, для жизни к-рых необходимо присутствие в среде сходного с гемоглобином вещества (фактора X); неподвижные палочки (дл. 1-1,5 мк), не образующие спор. Род Haemophilus объединяет возбудителей инфлюэнцы (бактериального гриппа), инфлюэнцы свиней, мягкого шанкра и др. Отд. виды бактерий др. родов (напр., возбудитель коклюша) также лучше растут в присутствии фактора X.

ГЕМОГЛОБИНУРИЯ (от гемоглобин и греч. uron - моча), появление гемоглобина в моче. Обычно возникает вследствие внутрисосудистого распада эритроцитов после переливания несовместимой крови, воздействия нек-рых химич. и биол. ядов, лекарств, веществ, при непереносимости их, ряда возбудителей инфекции, при обширных травмах и др.

ГЕМОГРЕГАРИНЫ (Haemogregarinidae), семейство паразитич. простейших отр. Adeleida класса споровиков. 4 рода: Klossiella, Hepatozoon, Haemogregarina, Karyolysus. Паразитируют в организме млекопитающих, пресмыкающихся, земноводных, рыб. Бесполое размножение (шизогония) протекает в эритроцитах (у Haemogregarina), в эндотелии кровеносных сосудов (у Klossiella, Karyolysus) или во внутр. органах позвоночных (у Hepatozoon). Половой процесс и спорогония протекают в организме животного-переносчика (пиявки, насекомые, клещи).

ГЕМОДИАЛИЗ (от гемо... и греч. dialysis - разложение, отделение), метод вне-почечного очищения крови при острой и хронич. почечной недостаточности. Во время Г. происходит удаление из организма токсич. продуктов обмена веществ, нормализация нарушений водного и электролитного балансов. Г. осуществляют обменным переливанием крови (одновременное массивное кровопускание с переливанием такого же количества донорской крови), обмыванием брюшины солевым раствором (перитонеальный диализ), промыванием слизистой оболочки кишечника умеренно гипертонич. растворами (кишечный диализ). Наиболее эффективным методом Г. является применение аппарата искусственная почка. А. П. Ржанович.

ГЕМОДИНАМИКА (от гемо... и динамика), движение крови по сосудам, возникающее вследствие разности гидроста-тич. давления в различных участках сосудистой системы. Разность давлений обеспечивается нагнетательной функцией сердца, выбрасывающего в сосудистую систему при каждом сокращении у человека 60-70 мл крови, что составляет в состоянии покоя 4,5-5 л/мин. Эта величина - минутный объём сердца, или сердечный выброс,- важнейший показатель функции сердечно-сосудистой системы; во время мышечной работы она может достигать 20-25 л/мин. Кровь выбрасывается в замкнутую сосудистую систему, оказывающую сопротивление движению крови вследствие трения крови о сосудистую стенку и вязкости самой крови. При детальном математич. моделировании движения крови она рассматривается как взвесь форменных элементов, т. е. неньютоновская жидкость, а кровеносные сосуды - как вязко-эластичные трубки, свойства к-рых (геометрические - размеры, ветвления, и физические - вязкость, упругость, проницаемость) меняются по длине. В первом приближении трение крови о стенку сосуда зависит от размера сосуда, т. е. от его диаметра и длины. Сопротивление сосуда движению крови может быть выражено Пуазёйля законом. Рис. 1. Схема последовательного (а) и параллельного (б) соединения кровеносных сосудов. Сосудистая система - серия трубок различной длины и диаметра, соединённых как последовательно, так и параллельно. При последовательном соединении (рис. 1, а) величина суммарного сопротивления равна сумме сопротивлений отд. сосудов: При параллельном соединении (рис. 1, б) суммарное сопротивление выражается уравнением: Наибольшим сопротивлением обладают концевые участки артерий - артериолы. Это создаёт препятствие для оттока крови из артериальной системы и приводит к созданию т. н. артериального давления (см. Кровяное давление). Его уровень (Р) пропорционален величине сосудистого сопротивления (R) и количеству крови, выбрасываемому сердцем в сосудистую систему в единицу времени т. е. отсюда Эта формула применима для всей сер-дечно-сосудисгой системы в целом в случае, если давление в начале этой системы (т. е. в артериях) равно Р, а в конце системы (т. е. в устье полых вен) равно нулю. Если последнее не равно нулю, то уравнение приобретает несколько иной вид: (где P1 и Р2 - давление соответственно в начале и в конце сосудистой системы). Это осн. уравнение Г., пользуясь к-рым можно определить сосудистое, или т. н. периферическое, сопротивление, если известны давления P1 и Р3 и минутный объём сердца (Q). Величина периферич. сопротивления в основном определяется тонусом арте-риол, т. е. степенью постоянного сокращения гладкой мускулатуры стенок этих сосудов. Изменение тонуса артериол регулирует уровень артериального давления в организме. Оно вызывает изменение просвета артериол и сопротивления сосудов и т. о. регулирует величину кровотока через отдельные сосудистые области, приводя его в соответствие с интенсивностью жизнедеятельности ткани, т. е. с её потребностью в кислороде и питательных веществах (в интенсивно работающих тканях, напр, в сокращающейся мышце, кровоток может увеличиваться в 100 и более раз, причём величина общего артериального давления и минутный объём сердца могут существенно не изменяться ). Количество крови, протекающее через все участки сосудистой системы в единицу времени, одинаково. Линейная скорость движения крови обратно пропорциональна величине суммарного просвета данного отдела сосудистого русла. Средняя линейная скорость кровотока в аорте человека достигает 50 см/сек, в капиллярах она равна 0,5 мм/сек, a s полых венах - 20 см/сек. Кровоток в аорте и крупных артериях прерывистый (пульсирующий), увеличивается при систоле (сокращении) сердца и падает почти до нуля во время диастолы (расслабления) сердца. Взаимоотношения между суммарным просветом различных участков сосудистого русла, уровнем кровяного давления в них и скоростью кровотока представлены на рис. 2. Благодаря упругости артериальных стенок артериолы при систоле растягиваются, вмещая дополнительное количество крови, а при диастоле спадаются, способствуя проталкиванию крови в капилляры. Это обеспечивает непрерывный ток крови в капиллярах, что важно для обмена веществ между кровью и тканями. Рис. 2. Изменение скорости кровотока (1), просвета сосудов (2) и кровяного давления (3) в разных отделах сосудистого русла. Лит.: Чижевский А. Л., Структурный анализ движущейся крови, М., 1959; Савицкий Н. Н., Биофизические основы кровообращения и клинические методы изучения гемодинамики, 2 изд., Л., 1963; Физиология человека, М., 1966; Гайтон А., Физиология кровообращения. Минутный объем сердца и его регуляция, [пер. с англ.], М., 1969; Handbook of physiology, v. 1-3, Wash., 1962-65. Г. И. Косицкий.

ГЕМОЛИЗ (от гемо... и греч. lysis - распад, растворение), гематолизис, эритроцитолиз, процесс разрушения эритроцитов с выделением из них в окружающую среду гемоглобина. Физиологический Г., завершающий жизненный цикл эритроцитов (ок. 120 дней), происходит в организме человека и животных непрерывно. В физиологических условиях ежедневно Г. подвергается 0,8% всей массы эритроцитов, обычно "стареющих". Окончательный распад "стареющих" эритроцитов происходит преим. в селезёнке. При распаде эритроцитов из освободившегося гемоглобина путём сложных превращений образуется один из пигментов жёлчи -били-рубин, по количеству к-рого в крови и его производных в кале и моче можно судить о выраженности Г. Освобождённое в процессе распада гемоглобина железо депонируется в ретикулоэндртелиальных клетках печени и селезёнки. После сложных превращений железо связывается с (3-глобулиновой фракцией белка крови и участвует в выработке нового гемоглобина. Отклонение в балансе между литическим агентом и ингибитором может привести к преобладанию процесса кроверазрушения над кровеобразованием, т. е. к патологич. Г. Патологич. Г. наблюдается при гемолитич. анемиях, гемоглобинопатиях, под влиянием гемолитич. ядов (токсины нек-рых бактерий, свинец, мышьяк, нитробензол, яд сморчков и др.), вследствие образования аутоиммунных и изоэритроцитарных антител при переливании несовместимой крови, при резусном конфликте (см. Геополитическая болезнь новорождённых), воздействии нек-рых хим. агентов, холода; у чувствительных лиц - при приёме нек-рых лекарств, веществ, вдыхании пыльцы нек-рых растений и др. При патологич. Г. разрушение эритроцитов происходит во всех клетках ретикулоэндотелиальной системы (печень, костный мозг, лимфатич. узлы и др.), а также может наблюдаться в сосудистом русле. В этом случае большая часть гемоглобина разрушенных эритроцитов связывается со специфич. белком - гаптоглобином, а избыток, проходя через почечный фильтр, обнаруживается в моче - гемоглобинурия. Распад сразу большой массы эритроцитов (напр., при гемолитич. анемиях) сопровождается тяжёлым состоянием организма (г емолитический шок) и может привести к смерти. Г. может возникнуть в долго хранящейся консервированной крови, что делает её непригодной для обычных переливаний. А. М. Полянская.

ГЕМОЛИЗИНЫ, вещества, способные освобождать гемоглобин из эритроцитов крови; при этом гемоглобин растворяется в плазме или окружающей жидкости и кровь (или взвесь эритроцитов) становится прозрачной (лаковая кровь). Г.- продукты жизнедеятельности мн. бактерий (стафилококков, стрептококков и др.), паразитич. червей, насекомых, скорпионов, нек-рых ядовитых змей (лизолецитины). Г. могут присутствовать в сыворотке крови (нормальные Г.) и лизировать собств. эритроциты (а у т о г е м о л и з); однако чаще они появляются после внутривенного введения эритроцитов, полученных от животных того же вида (изолизины) или др. вида (г е т е р о л и з и н ы). Гемолитич. свойства сывороток теряются при нагревании до 56оС в течение 30 мин, что зависит от присутствия в них комплемента, необходимого для действия гетеролизинов крови на эритроциты. X. X. Планелъес.

ГЕМОЛИМФА (от гемо... и лимфа), жидкость, циркулирующая в сосудах и межклеточных полостях мн. беспозвоночных (членистоногих, моллюсков), имеющих незамкнутую систему кровообращения. Она выполняет те же функции, что кровь и лимфа у животных с замкнутой кровеносной системой (нек-рые черви, позвоночные): осуществляет транспорт кислорода и углекислого газа, питательных веществ и продуктов выделения. Г. богата органич. веществами, в т. ч. белками, часто содержит дыхательные пигменты (гемоцианин и гемоглобин). В состав Г. входят также клеточные элементы, различающиеся по строению и функции (фагоциты, экскреторные клетки, в нек-рых случаях - эритроциты).

ГЕМОЛИТИЧЕСКАЯ БОЛЕЗНЬ НОВОРОЖДЁННЫХ, эритробластоз плода (эритробласты - молодые формы эритроцитов), заболевание, проявляющееся с момента рождения или с первых часов жизни ребёнка, чаще всего при несовместимости крови матери и плода по резус-фактору. Проявляется Г. б. н. в отёчной форме (наиболее тяжёлая), в желтушной форме и в форме врождённой анемии. Наиболее часто встречается желтушная форма. Желтуха, заканчивающаяся нередко смертельным исходом, известна давно, однако причина Г. б. н. была установлена только в 1937-40, когда австр. врач К. Ландштейнер и амер. врач А. Винер обнаружили у 85% людей в эритроцитах особое вещество, имеющееся также у всех обезьян породы резус и названное поэтому резус-фактором.

Если у женщины, в крови к-рой не содержится резус-фактора (резус-отрицательной), наступает беременность от резус-положительного супруга и плод унаследует резус-положительную кровь отца, то в крови матери постепенно нарастает содержание резус-антител. Проникая через плаценту в кровь плода, эти антитела разрушают эритроциты плода, а затем и эритроциты новорождённого. Г. б. н. может развиться и при групповой несовместимости крови супругов (см. Группы крови), когда ребёнок наследует группу крови отца; обычно в этих случаях у матери группа 1(О), а у ребёнка П(А) или Ш(В). При несовместимости крови матери и ребёнка по резус-фактору Г. б. н. обычно наблюдается у детей, родившихся от 2-3-й и последующих беременностей, т. к. содержание резус-антител в организме матери нарастает медленно. Однако заболевание может развиться и у ребёнка, родившегося от первой беременности, если матери во время беременности переливали кровь или вводили кровь внутримышечно без учёта резус-фактора. Г. б. н. развивается в среднем у 2-5 новорождённых из 1000. Появлению тяжёлой формы Г. б. н. способствуют и предшествующие аборты. Аборт, произведённый при первой беременности, уже ведёт к образованию антител и увеличивает возможность заболевания Г. б. н. Желтушная форма Г. б. н. характеризуется ранним появлением желтухи (в первые часы или первые сутки после рождения) с интенсивным нарастанием окрашивания в последующие дни (т. н. физиол. желтуха новорождённых, наблюдаемая у здоровых детей, появляется обычно на 3-4-й день после рождения). Желтуха обусловлена выходом в плазму крови билирубина, образующегося при разрушении эритроцитов ребёнка. В последующие дни состояние ребёнка обычно ухудшается, нарастает анемия, ребёнок становятся вялым, плохо сосёт, нередко могут появляться судороги в связи с поражением нервной системы. Дети, перенёсшие Г. б. н. в форме тяжёлой желтухи, при недостаточном лечении иногда отстают в развитии. При отёчной форме (общий врождённый отёк плода) плод чаще родится преждевременно, мёртвым или же погибает в первые часы жизни. Заболевание проявляется отёком кожи, подкожной клетчатки, накоплением жидкости в грудной и брюшной полостях, увеличением печени и селезёнки, выраженным малокровием. Наиболее лёгкая форма Г. б. н.- врождённая анемия новорождённых проявляется бледностью кожных покровов в сочетании с низким количеством гемоглобина и эритроцитов, обычно протекает благоприятно и при своевременном лечении кончается выздоровлением.

Лечение. Для быстрейшего удаления из организма новорождённого токсич. продуктов, образовавшихся при разрушении эритроцитов, а вместе с тем и резус-антител применяют в первые сутки после рождения обменное переливание крови (замена 70-80% крови ребёнка кровью резус-отрицательного донора), к-рое иногда повторяют. Назначают препараты, улучшающие функцию печени. Обычно в течение первых 2 недель детей с Г. б. н. кормят сцеженным молоком другой женщины, т. к. именно в это время молоко матери содержит вредные для ребёнка резус-антитела. По исчезновении антител переходят на кормление ребёнка молоком матери. Дети, страдающие Г. б. н., нуждаются во внимательном уходе, правильном вскармливании.

Профилактика. Всем беременным делают исследование крови для выявления резус-отрицательных женщин, к-рые должны быть на учёте в женской консультации. Резус-отрицательным беременным один раз в месяц, а при необходимости и чаще, проводят определение в крови резус-антител. Важно сохранить беременность. При наличии антител в крови женщинам рекомендуют более длительные перерывы между беременностями, т. к. с каждой последующей беременностью в крови нарастает титр антител. Каждый ребёнок, родившийся от матери с резус-отрицательной кровью, подлежит тщательному наблюдению и обязательному обследованию в первые часы жизни на содержание в крови билирубина, резус-фактора, групповую принадлежность крови.

Лит.: Полякова Г. П., Гемолитическая болезнь новорожденного, в кн.: Многотомное руководство по акушерству и гинекологии, М., 1964, т. 3, кн. 2, с. 809 - 27; Гемолитическая болезнь новорожденного. (Сб. статей), Л., 1958. И. А. Штерн.

ГЕМОМЕТР (от гемо... и ...метр), гемоглобинометр, прибор для определения количества гемоглобина в крови. В практике используется Г., предложенный в 1902 швейц. Учёным Гемометр ГС-2.

Г. Сали, основанный на сравнении окраски испытуемой крови, обработанной соляной к-той, с окраской стандартов. В СССР выпускается ГС-2 (рис.). Он состоит из двух цветных стандартов и пробирки с двумя градуировками - для определения гемоглобина в грамм-процентах и в процентах (100% соответствуют 16 г%; каждый грамм соответствует 6%). Во многих странах употребляются Г., в к-рых 100% шкалы соответствуют не 16 г% , а 14,8 г% , 17,3 г% и т. д. При обработке крови раствором соляной к-ты гемоглобин переходит в солянокислый гематин, раствор приобретает бурый цвет. Раствор в пробирке разводят, постепенно прибавляя дистиллированную воду, пока цвет раствора не сравняется с цветом стандарта. Количество гемоглобина определяется положением уровня раствора на шкале пробирки. Существуют газометрический (по количеству поглощённого кислорода, углекислого газа) и химический (определение железа в гемоглобиновой молекуле) методы определения количества гемоглобина, к-рые более точны, но из-за трудоёмкости не нашли широкого применения. Для целей стандартизации Г. используется метод фотоэлектроспектрометрии.

Лит.: Справочник по клиническим лабораторным методам исследования, под общ. ред. Е. А. Кост, М., 1968, с. 6-26.

А. М. Полянская.

ГЕМОНХОЗ, гельминтозное заболевание жвачных, вызываемое нематодами из рода Haemonchus. Распространено всесветно. Гемонхусы - мелкие паразиты (18-35 мм дл.). Личинки развиваются во внешней среде. Наиболее восприимчив к Г. молодняк. В южных р-нах у овец Г. иногда протекает в виде энзоотии (чаще в годы с обильными осадками). Гемонхозная инвазия вызывает тяжёлые расстройства всего организма, к-рые проявляются в поражении кишечника, нервной системы, кроветворных органов и эндокринных желез; молодняк при этом часто гибнет. Лечение проводят фенотиазином, к-рый скармливают с дроблёным зерном. Этот же препарат используют с профилактич. целью. Существенную роль в профилактике Г. играет также смена выпасов, биотермич. обезвреживание навоза, полноценное кормление животных.

ГЕМОПРОТЕИДЫ, сложные белки, содержащие окрашенную простетическую группу - гем. Относятся к хромопротеидам. Кроме дыхат. пигментов - гемоглобина и миоглобина, Г. включают широко распространённые дыхат. ферменты - цитохромы, и окислит, ферменты тканей - пероксидазу, катализирующую окисление органических веществ перекисью водорода, каталазу и леггемоглобин (легоглобин) - пигмент, обнаруженный в корневых клубеньках бобовых растений.

ГЕМОПРОТЕУС (Haemoproteus), род паразитических простейших подотряда кровяных споровиков (гемоспоридий) отряда кокцидий. Ок. 50 видов; распространены широко. Бесполое размножение Г. (шизогония) протекает в эндотелии кровеносных сосудов (преим. в лёгких) птиц, а также пресмыкающихся - ящериц, черепах, змей. Гаметоциты попадают в эритроциты. Половой процесс и спорогония происходят в кровососущих двукрылых насекомых, к-рые служат переносчиками Г. и при нападении на позвоночных животных заражают их Г. У птенцов Г. вызывает тяжёлое заболевание. У взрослых птиц патогенный эффект не наблюдается.

Ю. И. Полянский.

ГЕМОРРАГИЧЕСКИЕ ЛИХОРАДКИ, группа передающихся от животных человеку природноочаговых вирусных заболеваний, объединённых общими клинич. признаками - повышением темп-ры (лихорадка), подкожными и внутренними кровоизлияниями. По возбудителю, а также по способу распространения инфекции различают неск. видов. Г. л. с почечным синдромом (геморрагич. нефрозо-нефрит) встречается в Европе и Азии в виде групповых вспышек и спорадич. (единичных) случаев. Механизм передачи недостаточно выяснен; предполагается возможность передачи через гамазовых клещей. Природные очаги могут образовываться в различных ландшафтах (лес, степь, тундра). Резервуар инфекции - нек-рые виды мышевидных грызунов. Инкубационный период 11-24 дня. Крымская Г. л. встречается в виде спорадич, случаев в юж. степных районах СССР (Крым, Таманский п-ов, Ростовская обл. РСФСР, Юж. Казахстан, Узб. ССР, Кирг. ССР, Туркм. ССР, Тадж. ССР), а также в Болгарии, т. е. там, где распространены иксодовые клещи (Hyalomma). Заражение происходит в весенне-летний период. Инкубационный период 2-7 дней. Возбудитель обнаруживается в крови больных в течение всего лихорадочного периода. Сыворотка крови выздоравливающих обладает специфич. противовирусными свойствами. Омская Г. л. описана у жителей приозёрных посёлков Сибири, у охотников и членов их семей, в Барабинской степи (у непривитых). Встречается в осенне-зимний период в виде вспышек, к-рые связаны с эпизоотиямн у промысловых животных. Переносчики болезни - иксодовые клещи Dermacentor. Инкубационный период 3-7 дней. У человека вирус обнаруживают в течение всего лихорадочного периода. Клещевая индийская лихорадка (киасанурская лесная болезнь) вызывается вирусом, сходным с возбудителем омской Г. л. Наблюдается в весенне-летний период в виде спорадич. случаев. Инкубационный период 4- 8 дней. Вирус выделен от больных людей, обезьян, нескольких видов лесных грызунов и птиц, от иксодовых и гамазовых клещей. Аргентинской, или боливийской, Г. л. заболевают преим. с.-х. рабочие и члены их семей в период уборки кукурузы. Вирус выделен от людей, полевых грызунов и паразитирующих на них гамазовых клещей Нае-mophysalis. Инкубационный период 2-11 дней. Близко к Г. л. примыкают комариные лихорадки, встречающиеся в отд. странах Азии, Африки и Океании. По течению заболевания комариные лихорадки несколько отличаются от Г. л. По всей вероятности, они также передаются человеку от животных, но резервуары инфекции в природе ещё не выяснены. Передача возбудителя (вирус) осуществляется комарами. Вирус комариных лихорадок выделен от больных людей (в ранние сроки заболевания) и от комаров.

Заболевание Г. л. в большинстве случаев начинается остро: появляются озноб, лихорадка (омская, индийская, а иногда комариные), головная боль, резкая слабость; возникают кровотечения (носовые, желудочные, кишечные, маточные, почечные, полостные, из дёсен, подкожные) или геморрагич. сыпи на коже и слизистых оболочках. Отмечаются изменения в крови (лейкопения, а для Г. л. с почечным синдромом - лейкоцитоз), внутренних органах (Г. л. с почечным синдромом сопровождается поражением почек, что проявляется резкими болями в пояснице, а иногда, вследствие изменений в почечных канальцах, прекращением отделения мочи), в нервной системе (Г. л. с почечным синдромом, крымская, аргентинская и комариные часто сопровождаются коллапсом и шоком). У переболевших Г. л. остаётся прочный иммунитет.

Лечение симптоматическое: поддержание сердечной деятельности и борьба с кровоточивостью. При аргентинской и Г. л. с почечным синдромом - борьба с обезвоживанием (введение больших доз нормальной плазмы крови, электролитов; гормональные препараты - кортикостероиды). При крымской Г. л. положительные результаты даёт введение специфич. сыворотки.

Профилактика: уничтожение клещей и грызунов; применение средств, отпугивающих насекомых (акарицидные репелленты). Против омской Г. л. применяют спец. вакцину, обеспечивающую длительный и прочный иммунитет.

Лит.: Смородинцев А. А., Казбинцев Л. И., Чудаков В. Г., Вирусные геморрагические лихорадки, Л., 1963; Угрюмов Б. Л., Клиника геморрагических лихорадок, Киев, 1961 (библ.); Многотомное руководство по микробиологии, клинике и эпидемиологии инфекционных болезней, под ред. Н. Н. Жукова-Вережникова, т. 8, М., 1966, гл. 11 и 13.

ГЕМОРРАГИЯ (греч. haimorrhagia, от haima - кровь и rhegnymi - прорываю), то же, что кровотечение.

ГЕМОРРОЙ (от греч. haimorrhoi's - кровотечение, от haima - кровь и rheo - теку), почечуй, узловатое расширение вен прямой кишки, преим. в области заднего прохода. Различают узлы наружные (подкожные) и внутренние (подслизистые). Г. болеют обычно люди среднего н пожилого возраста, мужчины в 3 раза чаще женщин. Развитию Г. способствуют факторы, вызывающие повышение давления и застой крови в венах малого таза и венозных сплетениях прямой кишки (хронич.запоры, длительное пребывание во время работы в стоячем положении, опухоли таза и брюшной полости, цирроз печени, у женщин - неправильное положение матки, беременность); определённое значение имеет и наследственная, врождённая недостаточность строения вен. При развитии болезни в заднем проходе появляются зуд, жжение, боль. Во время дефекации или при резких напряжениях узлы выпадают; в дальнейшем они выпадают и при ходьбе. Выпавшие узлы нередко тромбируются и воспаляются; вследствие сокращения жома заднего прохода они могут ущемиться и омертветь. Одним из наиболее показательных признаков Г. являются кровотечения из узлов, в результате к-рых может развиться анемия. Лечение: устранение предрасполагающих моментов, восходящий холодный душ, при запорах - слабительные, клизмы, диета, в тяжёлых случаях - операция. Профилактика: устранение запоров, отказ от употребления алкоголя, грубой и острой пищи, лечебная физкультура.

Лит.: О болезнях прямой и толстой кишок, под ред. А. Н. Рыжих, М., 1963.

И. Б. Розанов.

ГЕМОРРОЙНАЯ ТРАВА, почечуйная трава, однолетнее растение из сем. гречишных; то же, что горец почечуйный; см. Горец.

ГЕМОСПОРИДИИ (Haemosporidia), кровеспоровики, подотряд простейших класса споровиков. 4 рода, включающие несколько десятков видов. Распространены повсеместно, но преим. в тропиках и субтропиках. Паразитируют внутри эритроцитов или эндотелиальных клеток сосудов позвоночных животных и человека, размножаясь здесь бесполым путём (множественное деление - шизогония). Половое размножение происходит в организме насекомых, к-рые служат переносчиками Г. В эритроцитах человека паразитируют различные представители рода плазмодиев (Plasmodium) - возбудители малярии.

ГЕМОТЕРАПИЯ (от гемо... и терапия), лечение кровью - переливание крови, а также её составных частей (плазмы, эритроцитарной, лейкоцитарной и тромбоцитной массы).

ГЕМОТОКСИНЫ (от гемо... и греч. toxikon - яд), вещества микробного, растительного или животного происхождения, повреждающие оболочки эритроцитов крови и вызывающие их гемолиз. Г.- 6. ч. ферменты типа лецитиназ или фосфолипаз, расщепляющие в оболочке эритроцитов фосфолипиды, или са-пониноподобные вещества, воздействующие на др. компонент оболочки - холестерин. Различают Г.: микробного происхождения (Г. стафилококков, стрептококков и др.); растит, происхождения (токсоальбумины, рицин, кротин, сапонины и абрин); животного происхождения. К последним относятся арахнолизины нек-рых пауков (Latrodectus, Atrax, Lycosa и др.), Г. паразитич. червей (Dibothriocephalus), змеиные яды, особенно яды змей сем. Viperidae, Crotalidae идр. Чувствительность эритроцитов разных видов животных к одному и тому же Г. неодинакова. Так, змеиные яды (напр., яд кобры) лизируют эритроциты морских свинок, собак и человека, но не действуют на эритроциты кр. рог. скота, овец и коз. Лецитины и холестерин в больших дозах предупреждают действие Г.

X. X. Планелъес.

ГЕМОТРАНСФУЗИОЛОГИЯ (от гемо..., лат. transfusio - переливание и ...логия), раздел гематологии, изучающий переливание крови и её составных частей (компонентов). Использование крови с лечебной целью началось с попыток в древности и в ср. века переливать кровь животных людям. В 1667 франц. учёный Ж. Дени успешно перелил кровь ягнёнка анемизированному (малокровному) больному. Дальнейшие попытки переливания крови животных больным людям кончались смертельно, что повлекло за собой его запрещение в ряде стран. В 1819 англ, акушёр Дж. Бланделл впервые перелил кровь человека человеку. В 1832 в России акушёр Г. С. Вольф, перелив человеческую кровь, спас жизнь больной, умиравшей от маточного кровотечения. Трактат о переливании крови (как единственном средстве во многих случаях спасти угасающую жизнь), составленный в историческом, физиологическом и хирургическом отношении (1848) А. М. Филомафитского был первым фундаментальным трудом по переливанию крови в России. Лишь с установлением групп крови в 1901 австр. учёным К. Ландштейнером и в 1907 чеш. врачом Я. Янским, с введением в 1914 для консервирования крови лимоннокислого натрия переливание крови стало безопасным и началось его широкое применение. Открытие амер. учёным А. Винером резус-фактора сделало переливание крови ещё более безопасным. В Сов. России в 1919 В. Н. Шамов первым провёл переливание крови с учётом групповой совместимости, а в 1921 Н. И. Еланский приготовил стандартные сыворотки для определения группы крови. В 1926 в Москве А. А. Богдановым был создан первый в мире науч. институт переливания крови. Разработку учения о переливании крови начали А. А. Богомолец, И. Р. Петров, С. И. Спасокукоцкий, М. П. Кончаловский, X. X. Владос и др. К 1932 было организовано три крупных науч.-методич. и организационных центра переливания крови - в Москве, Ленинграде и Харькове. В последующем сеть науч. учреждений, разрабатывающих наиболее актуальные направления по проблемам переливания крови и гематологии, расширилась. Кроме специализированных ин-тов, вопросами Г. занимаются многочисл. станции переливания крови. Исследования по одному из осн. вопросов - консервированию крови и её компонентов (эритроцитной, лейкоцитной массы, плазмы и др.)-проводили С. Д. Балаховский, Д. Н. Беленький, А. Д. Беляков, П. С. Васильев, Ф. Р. Виноград-Финкель, С. Е. Северин, А. Е. Киселёв, А. Н. Филатов и др. В результате этих исследований стало возможным удлинять сроки хранения биологически полноценной консервированной крови и её препаратов, применяя замораживание и ультрабыстрое замораживание. Значит. успехи достигнуты в области консервирования костного мозга (А. Г. Федотенков, С. С. Лаврик, Н. Г. Карташевский и др.). Важная проблема Г.- фракционирование (разделение белков крови). Полученные фракционированием белковые препараты (протеин, альбумин, фибриноген, фибринолизин, тромбин, гамма-глобулин и др.) используются в леч. практике. Применение метода плазмофореза, заключающегося в разделении полученной от донора крови на плазму и форменные элементы и возвращении донору эритроцитов, позволяет получить за год 6 - 7 л плазмы от одного донора без вреда для его здоровья. Вопросам трансфузионной тактики в хирургии посвящены работы С. И. Спасокукоцкого, П. Л. Сельцовского, В. И. Казанского, А. В. Гуляева, Б. В. Петровского, Д. М. Гроздова и др. Гемотерапия получила применение в клинике внутр. и инфекц. болезней, в акушерстве и гинекологии и др. благодаря исследованиям А. А. Багдасарова, П. М. Альперина, М. С. Дульцина и др. Большое место в Г. занимают серологические исследования Н. И. Блинова, Н. В. Попова, М. А. Умновой и др. по изучению групп крови, формированию групповых факторов и способности организма больных к образованию антител.

Актуальные в Г. проблемы заготовки и консервирования трупной (кадаверной) крови разработаны В. Н. Шамовым и С. С. Юдиным. Первый Междунар. конгресс по переливанию крови был созван в 1935 в Риме. Было основано Междунар. общество трансфузиологов, в работе к-рого активное участие принимают сов. учёные, также объединённые в науч. общество.

Лит.: Гаврилов О. К., Очерки истории развития и применения переливания крови, Л., 1968; Руководство по переливанию крови и кровезаменителей, [Л.], 1965.

А. М. Полянская.

ГЕМОТРАНСФУЗИЯ, то же, что переливание крови.

ГЕМОФИЛИЯ (от гемо... игреч. philia - склонность), наследственное заболевание, проявляющееся повышенной кровоточивостью. Наследование Г. связано с поражением генов женской половой хромосомы х, детерминирующих образование фактора VIII (антигемофильного глобулина) и фактора IX (Кристмаса). Женщины - лишь проводники (кондукторы) Г., передающие заболевание части своих сыновей. Известны единичные случаи Г. у женщин, родившихся от матери-кондуктора и отца, больного Г. Недостаточность в крови фактора VIII вызывает развитие гемофилии А (80-90% больных), при дефиците фактора IX возникает гемофилия В (10-15% больных). Гемофилия С, в основе к-рой лежит недостаточность фактора XI, описывается лишь в 5% случаев. Эта форма Г. встречается и у женщин. Кровоточивость при Г. проявляется с раннего детства, с возрастом становится менее выраженной. Даже лёгкие ушибы вызывают обширные кровоизлияния - подкожные, внутримышечные. Повторные кровоизлияния внутри суставов приводят к характерным для Г. тяжёлым изменениям в них (гемартрозы и их последствия). Порезы, удаление зуба и др. сопровождаются опасными для жизни кровотечениями, могут способствовать развитию малокровия. Кровотечения иногда возникают через неск. часов, даже дней после травмы или оперативного вмешательства. Осн. диагностич. признаки Г.- удлинение времени свёртываемости крови и дефицит антигемофильного глобулина в плазме (у здоровых - 0,02-0,03% ). Проводится также проба на свёртываемость смеси крови заведомо больного Г. и испытуемого. Лечение при кровотечении - переливание крови, плазмы (при гемофилии А переливают кровь и плазму первых часов консервации или непосредственно от донора больному); кровоостанавливающие средства общего действия, антигемофильный глобулин (АГГ), высушенная свежая плазма; проводят местную остановку кровотечения. Профилактика: хирургич. вмешательства у больных Г. должны осуществляться только по абсолютным показаниям. При необходимости оперативного вмешательства (в т. ч. удаления зубов) больные должны госпитализироваться, по возможности в специализированные учреждения. Больных Г. следует оберегать от травм. Дети, страдающие Г., подлежат наблюдению в спец. учреждениях диспансерного типа.

ГЕМОЦИАНИН (от гемо... и греч. kya-nos - синий), дыхательный пигмент гемолимфы моллюсков, высших ракообразных и нек-рых паукообразных, осуществляющий в организме транспорт кислорода. Г.- белок, относящийся к хромопротеидам, мол. масса 350 000 - 6 500 000. Соединение кислорода с Г. обусловлено наличием в его составе меди. Окисленный Г. окрашен в синий цвет, восстановленный - бесцветен.

ГЕМОЦИТОБЛАСТ (от гемо..., греч. kytos - вместилище, здесь - клетка и blastos - росток, зародыш), одна из форм кроветворных клеток у позвоночных животных и человека. Согласно теории происхождения различных кровяных элементов из клеток одного типа, из Г. образуются и эритроциты, и лейкоциты, и мегакариоциты. Цитоплазма Г. базофильна из-за высокой концентрации в ней рибонуклеиновой кислоты. Иногда в цитоплазме Г. встречаются азурофильные зёрна или нити. Г. возникает из мезенхимной клетки. На ранних стадиях развития зародыша позвоночных Г. находятся в сосудах желточного поля (п е р в и ч н ы е Г.). На поздних стадиях и у взрослых организмов Г. сосредоточены в кроветворных органах (вторичные Г.); у человека - в костном мозге и лимфоидных органах кроветворения. Г. способны делиться путём митоза.

Е. С. Кирпичникова.

ГЕМПДЕН, Хемпден (Hampden) Джон (1594, Лондон,-24.6.1643, Чалгров-Филд, Оксфордшир), деятель Английской революции 17 в. В 1621 был избран в парламент и стал одним из лидеров парламентской оппозиции. В 1637 осуждён за отказ уплатить корабельную подать, введённую Карлом I. Дело Гемпдена способствовало усилению борьбы против абсолютизма. Долгий парламент в 1640 отменил решение суда. Г. был включён в список 5 лидеров Долгого парламента, к-рых Карл I приказал арестовать в янв. 1642 по обвинению в гос. измене, однако выступления нар. масс сорвали осуществление этого приказа. С начала гражд. войны примкнул к индепендентам, участвовал в организации парламентской армии. 18 июня 1643 был смертельно ранен в бою.

Ю. М. Сапрыкин.

ГЕМПЕЛЬ, Хемпель (Hempcl) Вальтер (5.5.1851, Пульсниц, Саксония,- 1.12.1916, Дрезден), немецкий химик-аналитик и технолог. Ученик Р. Бунзена. В 1879-1913 профессор Высшей технич. школы в Дрездене. Г. предложил применяемые и в наст, время газовые бюретку и пипетку, эксикатор, калориметр и др. Разработал методы газового анализа, определял теплоту сгорания углей (с 1892), указал на возможность применения электролиза растворов хлористого натрия для получения едкого натра и хлора (1899). Соч.: Gasanalytische Methoden, 4 Aufl., Braunschweig, 19i3.

ГЕМПШИРСКИЕ ОВЦЫ, мясо-шёрстная порода овец. Выведена в Великобритании в графствах Хэмпшир (Гемпшир, Hampshire), Уилтшир и др. в 1-й пол. 19 в. скрещиванием местных грубошёрстных и помесных темноголовых овец с саутдаунскими. Овцы крупные, с широким и глубоким туловищем, безрогие; голова тёмная. Отличаются хорошей скороспелостью. В племенных стадах взрослые бараны весят 90-110кг, матки 65-75 кг. Настриг шерсти с баранов 5 - 6 кг, с маток 3-4 кг. Шерсть 50-58-го качества, дл. 7-8 см', идёт на изготовление гл. обр. трикотажных изделий. Плодовитость 120-130 ягнят от 100 маток. Г. о. хорошо приспосабливаются к различным природным условиям. Разводятся в Великобритании, США, Аргентине, Австралии и др. странах.

В СССР Г. о. использовали при выведении горьковской и литовской черноголовой пород овец.

С.В. Буйлов.

ГЕМЭРИТРИН (от греч. haima - кровь и erythros - красный), дыхательный пигмент, осуществляющий транспорт кислорода у нек-рых кольчатых червей. Содержится в клеточных элементах полостной жидкости. Г.- белок, содержащий железо. Железо в Г., в отличие от гемоглобина, по-видимому, входит в состав поли-пептидной простетической группы. В окисленном состоянии Г. красного цвета.

ГЕН (от греч. genos - род, происхождение), элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты - ДНК (у нек-рых вирусов - рибонуклеиновой кислоты - РНК). Каждый Г. определяет строение одного из белков живой клетки и тем самым участвует в формировании признака или свойства организма. Совокупность Г.- генотип - несёт генетическую информацию о всех видовых и индивидуальных особенностях организма. Доказано, что наследственность у всех организмов на Земле (включая бактерии и вирусы) закодирована в последовательностях нуклеотидов Г. У высших (эукариотических) организмов Г. входит в состав особых нуклеопротеидных образований - хромосом. Главная функция Г.- программирование синтеза ферментных и др. белков, осуществляющегося при участии клеточных РНК (информационных - и-РНК, рибосомных - р-РНК и транспортных - т-РНК),- определяется химич. строением Г. (последовательностью в них дезоксирибонуклеотидов - элементарных звеньев ДНК). При изменении структуры Г. (см. Мутации) нарушаются определённые биохимич. процессы в клетках, что ведёт к усилению, ослаблению или выпадению ранее существовавших реакций или признаков.

Первое доказательство реального существования Г. было получено основоположником генетики Г. Менделем в 1865 при изучении гибридов растений, исходные формы к-рых различались по одному, двум или трём признакам. Мендель пришёл к заключению, что каждый признак организмов должен определяться наследственными факторами, передающимися от родителей потомкам с половыми клетками, и что эти факторы при скрещиваниях не дробятся, а передаются как нечто целое и независимо друг от друга. В результате скрещивания могут появиться новые сочетания наследственных факторов и определяемых ими признаков, причём частоту появления каждого сочетания можно предсказать, зная наследственное поведение признаков родителей. Это позволило Менделю разработать статистически-вероятностные количеств, правила, описывающие комбинаторику наследственных факторов при скрещиваниях. Термин Г. введён дат. биологом В. Иогансеном в 1909. В последней четв. 19 в. было высказано предположение, что важную роль в передаче наследственных факторов играют хромосомы, а в 1902-03 амер. цитолог У. Сёттон и нем. учёный Т. Бовери представили цитологич. доказательства того, что менделевские правила передачи и расщепления признаков можно объяснить перекомбинированием материнских и отцовских хромосом при скрещиваниях. Амер. генетик Т. X. Морган в 1911 начал разрабатывать хромосомную теорию наследственности. Было доказано, что Г. расположены в хромосомах и что сосредоточенные в одной хромосоме Г. передаются от родителей потомкам совместно, образуя единую группу сцепления. Число групп сцепления для любого нормального организма постоянно и равно гаплоидному числу хромосом в его половых клетках. После того как было доказано, что при кроссинговере гомологичные хромосомы обмениваются друг с другом участками - блоками Г.,- стала ясной неодинаковая степень сцепления между различными Г. Использовав явления кроссинговера, Морган с сотрудниками приступили к анализу внутрихромосомной локализации Г. и доказали, что они располагаются в хромосоме линейно и каждый Г. занимает строго определённое место в соответств. хромосоме. Сравнивая частоту и последствия кроссинговера между разными парами, можно составить генетические карты хромосом, в к-рых точно указано взаимное расположение Г., а также приблизительное расстояние между ними. Подобные карты построены для ряда животных (например, дрозофилы, домашней мыши, кур), растений (кукурузы, томатов и др.), бактерий и вирусов. Одновременное изучение нарушений расщепления признаков в потомстве и цитологич. изучение строения хромосом в клетках позволяет сопоставить нарушения в структуре отдельных хромосом с изменением признаков у данной особи, что показывает положение в хромосоме Г., определяющего тот или иной признак.

В первой четв. 20 в. Г. описывали как элементарную, неделимую единицу наследственности, управляющую развитием одного признака, передающуюся целиком при кроссинговере и способную к изменению. Дальнейшие исследования (сов. учёные А. С. Серебровский, Н. П. Дубинин, И. И. Агол, 1929; Н. П. Дубинин, Н. Н. Соколов, Г. Д. Тиняков, 1934, и др.) выявили сложность строения и дробимость Г. В 1957 американский генетик С. Бензер на фаге Т 4 доказал сложное строение Г. и его дробимость; он предложил для единицы функции, определяющей структуру одной полипептидной цепи, название цистрон, для единицы мутации - мутон и для единицы рекомбинации - рекон. В пределах одной функциональной единицы (цистрона) находится большое число мутонов и реконов.

К 50-м гг. 20 в. были накоплены доказательства того, что материальной основой Г. в хромосомах является ДНК. Англ, учёный Ф. Крик и амер.- Дж. Уотсон (1953) выяснили структуру ДНК и высказали гипотезу (позже полностью доказанную) о механизме действия Г. ДНК состоит из двух комплементарных (т. е. взаимодополняющих) полинуклеотидных цепей, остов к-рых образуют сахарные и фосфатные остатки; к каждому сахарному остатку присоединяется по одному из четырёх азотистых оснований. Цепи соединены водородными связями, возникающими между основаниями. Водородные связи могут образоваться только между строго определёнными комплементарными основаниями: между аденином и тимином (пара AT) и гуанином и цитозином (пара ГЦ). Этот принцип спаривания оснований объяснил, как осуществляется точная передача генетич. информации от родителей потомкам (см. Репликация), с одной стороны, и от ДНК к белкам (см. Трансляция и Транскрипция) - с другой.

Итак, репликация Г. определяет сохранение и неизменную передачу потомкам строения участка ДНК, заключённого в данном Г. (аутокаталитич. функция, или свойство аутосинтеза). Способность задавать порядок нуклеотидов в молекулах информационной РНК (и-РНК) - гетерокаталитич. функция, или свойство гетеросинтеза - определяет порядок чередования аминокислот в синтезируемых белках. На участке ДНК, соответствующем Г., синтезируется в соответствии с правилами комплементарности молекула и-РНК; соединяясь с рибосомами, она поставляет информацию для правильной расстановки аминокислот в строящейся цепи белка. Линейный размер Г. связан с длиной полипептидной цепи, строящейся под его контролем. В среднем в состав Г. входит от 1000 до 1500 нуклеотидов (0,0003-0,0005 мм). Амер. исследователи А. Бреннер с сотрудниками (1964), Ч. Яновский с сотрудниками (1965) доказали, что между структурой Г. (чередованием нуклеотидов в' ДНК) и строением белка, точнее полипептида (чередованием аминокислот в нём), имеется строгое соответствие (т. н. колинеарность ген - белок).

Г. может изменяться в результате мутаций, к-рые в общем виде можно определить как нарушение существующей последовательности нуклеотидов в ДНК. Это изменение может быть обусловлено заменой одной пары нуклеотидов другой парой (трансверсии и транзиции), выпадением нуклеотидов (делеция), удвоением (дупликация) или перемещением участка (транслокация). В результате возникают новые аллели, к-рые могут быть доминантными (см. Доминантностъ), рецессивными (см. Рецессивность) или проявлять частичную доминантность. Спонтанное мутирование Г. определяет генетич., или наследственную, изменчивость организмов и служит материалом для эволюции.

Важным достижением генетики, имеющим большое практич. значение (см. Селекция), явилось открытие индуцированного мутагенеза, т. е. искусственного вызывания мутаций лучевыми агентами (сов. биологи Г. А. Надсон и Г. С. Филиппов, 1925; амер. генетик Г. Мёллер, 1927) и хим. веществами (сов. генетики В. В. Сахаров, 1933; М. Е. Лобашев, 1934; С. М. Гершензон, 1939; И. А. Рапопорт, 1943; англ.-Ш.Ауэрбах и Г.Робсон, 1944). Мутации могут быть вызваны различными веществами (алкилирующие соединения, азотистая кислота, гидро-ксиламины, гидразины, красители акридинового ряда, аналоги оснований, перекиси и др.). В среднем каждый Г. мутирует у одной из 100 000 - 1 000 000 особей в одном поколении. Применение химич. и лучевых мутагенов резко повышает частоту мутаций, так что новые мутации в определённом Г. могут появляться у одной из 100-1000 особей на поколение. Нек-рые мутации оказываются летальными, т. е. лишают организм жизнеспособности. Напр., в тех случаях, когда в результате мутации Г. определяемый им белок утрачивает активность, развитие особи прекращается.

В 1961 франц. генетики Ф. Жакоб и Ж. Моно пришли к выводу о существовании двух групп Г.- структурных, отвечающих за синтез специфических (ферментных) белков, и регуляторных, осуществляющих контроль за активностью структурных Г. Механизм регуляции активности Г. лучше всего изучен у бактерий. Доказано, что регуляторные Г., наз. иначе Г.-регуляторами, программируют синтез особых веществ белковой природы - репрессооов. В 1968 амер. исследователи М. Пташне, В. Гильберт, Б. Мюллер-Хилл выделили в чистом виде репрессоры фага и лактозного оперона кишечной палочки. В самом начале серии структурных Г. расположена небольшая область ДНК - оператор. Это не Г., т. к. оператор не несёт в себе информации о структуре к.-л. белка или РНК. Оператор - это область, способная специфически связывать белок-репрессор, вследствие чего целая серия структурных Г. может быть временно выключена, инактивирована. Обнаружен ещё один элемент системы, регулирующей активность Г., - промотер, к к-рому присоединяется РНК-полимераза. Нередко структурные Г. ряда ферментов, связанных общностью биохимич. реакций (ферменты одной цепи последовательных реакций), располагаются в хромосоме рядом. Такой блок структурных генов вместе с оператором и промотером, управляющими ими и примыкающими к ним в хромосоме, образует единую систему - оперон. С одного оперона может считываться одна молекула и-РНК, и тогда функции разделения этой и-РНК на участки, соответствующие отд. структурным Г. оперона, выполняются в ходе синтеза белка (в процессе трансляции). Дж. Беквит с сотрудниками (США, 1969) выделили в чистом виде индивидуальный Г. кишечной палочки, точно определили его размеры и сфотографировали его в электронном микроскопе. X. Корана с сотрудниками (США, 1967-70) осуществили химич. синтез индивидуального Г.

Феномен реализации наследственных свойств клетки и орган